Last Modified: 05-13-2024 |
6.11:8.1.0 |
Doc ID: RM100000001NMQQ |
Model Year Start: 2021 |
Model: Corolla |
Prod Date Range: [04/2020 - 09/2022] |
Title: 2ZR-FXE (ENGINE CONTROL): SFI SYSTEM: P219519,P219524,P219618,P219623; A/F (O2) Sensor Signal Biased/Stuck Lean Bank 1 Sensor 1 Circuit Current Above Threshold; 2021 - 2022 MY Corolla Corolla HV [04/2020 - 09/2022] |
DTC
|
P219519
|
A/F (O2) Sensor Signal Biased/Stuck Lean Bank 1 Sensor 1 Circuit Current Above Threshold
|
DTC
|
P219524
|
A/F (O2) Sensor Signal Biased/Stuck Lean Bank 1 Sensor 1 Signal Stuck High
|
DTC
|
P219618
|
A/F (O2) Sensor Signal Biased/Stuck Rich Bank 1 Sensor 1 Circuit Current Below Threshold
|
DTC
|
P219623
|
A/F (O2) Sensor Signal Biased/Stuck Rich Bank 1 Sensor 1 Signal Stuck Low
|
DESCRIPTION
HINT:
Although the DTC titles say oxygen sensor, these DTCs relate to the air fuel ratio sensor.
The air fuel ratio sensor generates voltage* that corresponds to the actual air fuel ratio. This sensor voltage is used to provide the ECM with feedback so that it can control the air fuel ratio. The ECM determines the deviation from the stoichiometric air fuel ratio, and regulates the fuel injection time. If the air fuel ratio sensor malfunctions, the ECM is unable to control the air fuel ratio accurately.
The air fuel ratio sensor is a planar type and integrated with a heater, which heats the solid electrolyte (zirconia element). This heater is controlled by the ECM. When the intake air volume is low (the exhaust gas temperature is low), current flows to the heater to heat the sensor, in order to facilitate accurate oxygen concentration detection. In addition, the sensor and heater portions are a narrow type. The heat generated by the heater is conducted to the solid electrolyte through alumina, therefore sensor activation is accelerated.
In order to obtain a high purification rate of the carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) components in the exhaust gas, a three-way catalytic converter is used. For the most efficient use of the three-way catalytic converter, the air fuel ratio must be precisely controlled so that it is always close to the stoichiometric air fuel ratio.
*: Value changes inside the ECM. Since the air fuel ratio sensor is a current output element, the current is converted into a voltage inside the ECM. Any measurements taken at the air fuel ratio sensor or ECM connectors will show a constant voltage.
DTC No.
|
Detection Item
|
DTC Detection Condition
|
Trouble Area
|
MIL
|
Memory
|
Note
|
P219519
|
A/F (O2) Sensor Signal Biased/Stuck Lean Bank 1 Sensor 1 Circuit Current Above Threshold
|
While the fuel-cut operation is performed (during vehicle deceleration), the air fuel ratio sensor current is 2.2 mA or higher for 3 seconds or more (2 trip detection logic).
|
-
Air fuel ratio sensor (sensor 1)
-
ECM
|
Comes on
|
DTC stored
|
-
SAE Code: P2195
-
DTC for Mexico Models: Applies
|
P219524
|
A/F (O2) Sensor Signal Biased/Stuck Lean Bank 1 Sensor 1 Signal Stuck High
|
Both of the following conditions are met for 5 seconds or more (2 trip detection logic):
-
Air fuel ratio sensor voltage is higher than 3.8 V.
-
Heated oxygen sensor voltage is 0.21 V or higher.
|
-
Open or short in air fuel ratio sensor (sensor 1) circuit
-
Air fuel ratio sensor (sensor 1)
-
Intake system
-
Exhaust gas leak
-
Fuel pressure
-
Fuel injector assembly
-
EGR valve assembly
-
ECM
|
Comes on
|
DTC stored
|
-
SAE Code: P2195
-
DTC for Mexico Models: Applies
|
P219618
|
A/F (O2) Sensor Signal Biased/Stuck Rich Bank 1 Sensor 1 Circuit Current Below Threshold
|
While the fuel-cut operation is performed (during vehicle deceleration), the air fuel ratio sensor current is less than 0.7 mA for 3 seconds or more (2 trip detection logic).
|
-
Air fuel ratio sensor (sensor 1)
-
ECM
|
Comes on
|
DTC stored
|
-
SAE Code: P2196
-
DTC for Mexico Models: Applies
|
P219623
|
A/F (O2) Sensor Signal Biased/Stuck Rich Bank 1 Sensor 1 Signal Stuck Low
|
Both of the following conditions are met for 5 seconds or more (2 trip detection logic):
-
Air fuel ratio sensor voltage is less than 2.8 V.
-
Heated oxygen sensor voltage is less than 0.7 V.
|
-
Open or short in air fuel ratio sensor (sensor 1) circuit
-
Air fuel ratio sensor (sensor 1)
-
Intake system
-
Exhaust gas leak
-
Fuel pressure
-
Fuel injector assembly
-
EGR valve assembly
-
ECM
|
Comes on
|
DTC stored
|
-
SAE Code: P2196
-
DTC for Mexico Models: Applies
|
HINT:
-
When any of these DTCs are stored, check the air fuel ratio sensor output voltage by entering the following menus on the Techstream: Powertrain / Engine / Data List / A/F (O2) Sensor Voltage B1S1.
-
Short-term fuel trim values can also be read using the Techstream.
-
The ECM regulates the voltages at terminals A1A+ and A1A- of the ECM to a constant level. Therefore, the air fuel ratio sensor output voltage cannot be confirmed without using the Techstream.
-
If an air fuel ratio sensor malfunction is detected, the ECM will store a DTC.
MONITOR DESCRIPTION
Sensor Voltage Detection Monitor:
Under air fuel ratio feedback control, If the air fuel ratio sensor output voltage is less than 2.8 V (very rich condition) for 5 seconds despite the heated oxygen sensor output voltage being less than 0.7 V, the ECM stores DTC P219623. Alternatively, if the air fuel ratio sensor output voltage is higher than 3.8 V (very lean condition) for 5 seconds despite the heated oxygen sensor output voltage being 0.21 V or higher, DTC P219524 is stored.
Sensor Current Detection Monitor:
A rich air fuel mixture causes a low air fuel ratio sensor current, and a lean air fuel mixture causes a high air fuel ratio sensor current. Therefore, the sensor output becomes low during acceleration, and it becomes high during deceleration with the throttle valve fully closed. The ECM monitors the air fuel ratio sensor current during fuel-cut and detects any abnormal current values.
If the air fuel ratio sensor output is 2.2 mA or higher for 3 seconds or more of cumulative time, the ECM interprets this as a malfunction of the air fuel ratio sensor and stores DTC P219519 (stuck on high side). If the air fuel ratio sensor output is less than 0.7 mA for 3 seconds or more of cumulative time, the ECM stores DTC P219618 (stuck on low side).
MONITOR STRATEGY
Related DTCs
|
P2195: Air fuel ratio sensor signal stuck lean
P2196: Air fuel ratio sensor signal stuck rich
|
Required Sensors/Components (Main)
|
Air fuel ratio sensor
|
Required Sensors/Components (Related)
|
Heated oxygen sensor
|
Frequency of Operation
|
Continuous: Sensor voltage detection monitor
Once per driving cycle: Sensor current detection monitor
|
Duration
|
3 seconds: Sensor current detection monitor
5 seconds: Sensor voltage detection monitor
|
MIL Operation
|
2 driving cycles
|
Sequence of Operation
|
None
|
TYPICAL ENABLING CONDITIONS
All
Monitor runs whenever the following DTCs are not stored
|
P0010 (Camshaft timing oil control valve)
P0011 (VVT system - advance)
P0012 (VVT system - retard)
P0016 (VVT system - misalignment)
P0031, P0032, P101D (Air fuel ratio sensor heater)
P0037, P0038, P0141, P102D (Heated oxygen sensor heater)
P0101, P0102, P0103 (Mass air flow meter)
P0106, P0107, P0108 (Manifold absolute pressure)
P0111, P0112, P0113 (Intake air temperature sensor)
P0116, P0117, P0118 (Engine coolant temperature sensor)
P011B (Engine coolant temperature/intake air temperature sensor correlation)
P0121, P0122, P0123, P0222, P0223, P2135 (Throttle position sensor)
P0125 (Insufficient coolant temperature for closed loop fuel control)
P0128 (Thermostat)
P0136, P0137, P0138, P0139, P013A, P0607 (Heated oxygen sensor)
P0171, P0172 (Fuel system)
P0300 - P0304 (Misfire)
P0327, P0328 (Knock control sensor)
P0335 (Crankshaft position sensor)
P0340, P0342, P0343 (Camshaft position sensor)
P0351 - P0354 (Igniter)
P0400 (EGR system)
P0401 (EGR system (closed))
P0403 (EGR control circuit)
P0441 (EVAP system)
P0657, P0658, P2102, P2103, P2111, P2112, P2119 (Throttle actuator)
P219A, P219C, P219D, P219E, P219F (Air-fuel ratio imbalance)
P2228, P2229 (Atmospheric pressure sensor)
|
Sensor Voltage Detection Monitor
Time after engine start
|
30 seconds or more
|
Auxiliary battery voltage
|
11 V or higher
|
Air fuel ratio sensor status
|
Activated
|
Fuel system status
|
Closed-loop
|
Air fuel ratio imbalance of clogged EGR runner fail (P10AA)
|
Not set
|
Sensor Current Detection Monitor
Auxiliary battery voltage
|
11 V or higher
|
Engine coolant temperature
|
75°C (167°F) or higher
|
Atmospheric pressure
|
76 kPa(abs) [11 psi(abs)] or higher
|
Air fuel ratio sensor status
|
Activated
|
Continuous time of fuel-cut
|
3 seconds or more, and less than 10 seconds
|
Air fuel ratio imbalance of clogged EGR runner fail (P10AA)
|
Not set
|
TYPICAL MALFUNCTION THRESHOLDS
P2195: Sensor Voltage Detection Monitor (Lean Side Malfunction)
Heated oxygen sensor voltage
|
0.21 V or higher
|
Air fuel ratio sensor voltage
|
Higher than 3.8 V
|
P2196: Sensor Voltage Detection Monitor (Rich Side Malfunction)
Heated oxygen sensor voltage
|
Less than 0.7 V
|
Air fuel ratio sensor voltage
|
Less than 2.8 V
|
P2195: Sensor Current Detection Monitor (High Side Malfunction)
Duration of following condition
|
3 seconds or more
|
Air fuel ratio sensor current
|
2.2 mA or higher
|
P2196: Sensor Current Detection Monitor (Low Side Malfunction)
Duration of following condition
|
3 seconds or more
|
Air fuel ratio sensor current
|
Less than 0.7 mA
|
MONITOR RESULT
Refer to detailed information in Checking Monitor Status.
Click here
P2195, P2196: O2 Sensor / RANGE B1S1
Monitor ID
|
Test ID
|
Scaling
|
Unit
|
Description
|
$01
|
$91
|
Multiply by 0.004
|
mA
|
A/F sensor current
|
CONFIRMATION DRIVING PATTERN
HINT:
-
After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.
Click here
-
When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.
Click here
-
Connect the Techstream to the DLC3.
-
Turn the power switch on (IG).
-
Turn the Techstream on.
-
Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
-
Turn the power switch off and wait for at least 30 seconds.
-
Turn the power switch on (IG).
-
Turn the Techstream on.
-
Put the engine in Inspection Mode (Maintenance Mode).
Click here
-
Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher [A].
-
With the engine running, drive the vehicle at a speed between 75 and 100 km/h (47 and 62 mph) for at least 10 minutes [B].
CAUTION:
When performing the confirmation driving pattern, obey all speed limits and traffic laws.
HINT:
If the engine stops, further depress the accelerator pedal to restart the engine.
-
With shift state B selected [C] and the engine running, accelerate the vehicle to 75 km/h (47 mph) or more by depressing the accelerator pedal for at least 10 seconds [D].
CAUTION:
When performing the confirmation driving pattern, obey all speed limits and traffic laws.
HINT:
If the engine stops, further depress the accelerator pedal to restart the engine.
-
Soon after performing step [D] above, release the accelerator pedal for at least 5 seconds without depressing the brake pedal in order to execute fuel-cut control [E].
-
Allow the vehicle to decelerate until the vehicle speed is less than 10 km/h (6 mph).
-
Repeat steps [C] through [E] above at least 3 times in one driving cycle.
-
Enter the following menus: Powertrain / Engine / Trouble Codes [F].
-
Read the pending DTCs.
HINT:
-
If a pending DTC is output, the system is malfunctioning.
-
If a pending DTC is not output, perform the following procedure.
-
Enter the following menus: Powertrain / Engine / Utility / All Readiness.
-
Input the DTC: P219519, P219524, P219618 or P219623.
-
Check the DTC judgment result.
Techstream Display
|
Description
|
NORMAL
|
-
DTC judgment completed
-
System normal
|
ABNORMAL
|
-
DTC judgment completed
-
System abnormal
|
INCOMPLETE
|
-
DTC judgment not completed
-
Perform driving pattern after confirming DTC enabling conditions
|
WIRING DIAGRAM
CAUTION / NOTICE / HINT
NOTICE:
-
Inspect the fuses for circuits related to this system before performing the following procedure.
-
Vehicle Control History may be stored in the hybrid vehicle control ECU if the engine is malfunctioning. Certain vehicle condition information is recorded when Vehicle Control History is stored. Reading the vehicle conditions recorded in both the freeze frame data and Vehicle Control History can be useful for troubleshooting.
- for Nickel Metal Hydride Battery: Click here
- for Lithium-ion Battery: Click here
(Select Powertrain in Health Check and then check the time stamp data.)
Click here
-
If any "Engine Malfunction" Vehicle Control History item has been stored in the hybrid vehicle control ECU, make sure to clear it. However, as all Vehicle Control History items are cleared simultaneously, if any Vehicle Control History items other than "Engine Malfunction" are stored, make sure to perform any troubleshooting for them before clearing Vehicle Control History.
- for Nickel Metal Hydride Battery: Click here
- for Lithium-ion Battery: Click here
HINT:
-
A low air fuel ratio sensor voltage could be caused by a rich air fuel mixture. Check for conditions that would cause the engine to run rich.
-
A high air fuel ratio sensor voltage could be caused by a lean air fuel mixture. Check for conditions that would cause the engine to run lean.
-
Sensor 1 refers to the sensor closest to the engine assembly.
-
Sensor 2 refers to the sensor farthest away from the engine assembly.
-
Read freeze frame data using the Techstream. The ECM records vehicle and driving condition information as freeze frame data the moment a DTC is stored. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.
PROCEDURE
1.
|
CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO DTC P219519, P219524, P219618 OR P219623)
|
(a) Connect the Techstream to the DLC3.
(b) Turn the power switch on (IG).
(c) Turn the Techstream on.
(d) Enter the following menus: Powertrain / Engine / Trouble Codes.
(e) Read the DTCs.
Powertrain > Engine > Trouble Codes
Result
|
Proceed to
|
DTC P219519, P219524, P219618 or P219623 is output
|
A
|
DTC P219519, P219524, P219618 or P219623 and P013611, P013613, P013614, P013615, P013617 or P01361C are output
|
DTC P219519, P219524, P219618 or P219623 and other DTCs are output
|
B
|
HINT:
If any DTCs relating to the air fuel ratio sensor (DTCs for the air fuel ratio sensor heater or air fuel ratio sensor admittance) are output, troubleshoot those DTCs first.
A
|
|
|
2.
|
CONFIRM IF VEHICLE HAS RUN OUT OF FUEL IN PAST
|
(a) Has the vehicle run out of fuel in the past?
YES
|
|
|
(a) Connect the Techstream to the DLC3.
(b) Turn the power switch on (IG).
(c) Turn the Techstream on.
(d) Clear the DTCs.
Powertrain > Engine > Clear DTCs
(e) Turn the power switch off and wait for at least 30 seconds.
NEXT
|
|
|
4.
|
CHECK WHETHER DTC OUTPUT RECURS (DTC P219519, P219524, P219618 OR P219623)
|
(a) Drive the vehicle in accordance with the driving pattern described in the Confirmation Driving Pattern.
(b) Enter the following menus: Powertrain / Engine / Utility / All Readiness.
Powertrain > Engine > Utility
Tester Display
|
All Readiness
|
(c) Input the DTC: P219519, P219524, P219618 or P219623.
(d) Check the DTC judgment result.
Result
|
Proceed to
|
NORMAL
(DTCs are not output)
|
A
|
ABNORMAL
(DTC P219519, P219524, P219618 or P219623 is output)
|
B
|
A |
|
DTC CAUSED BY RUNNING OUT OF FUEL
|
(a) Connect the Techstream to the DLC3.
(b) Turn the power switch on (IG).
(c) Turn the Techstream on.
(d) Clear the DTCs.
Powertrain > Engine > Clear DTCs
(e) Turn the power switch off and wait for at least 30 seconds.
Test Value
|
Proceed to
|
NEXT (except Mexico Models)
|
A
|
NEXT (for Mexico Models)
|
B
|
A
|
|
|
6.
|
READ VALUE USING TECHSTREAM (TEST VALUE OF AIR FUEL RATIO SENSOR)
|
(a) Drive the vehicle in accordance with the driving pattern described in Confirmation Driving Pattern.
(b) Enter the following menus: Powertrain / Engine / Monitor / Current Monitor / O2 Sensor / Current.
Powertrain > Engine > Monitor
(c) Check that the status of O2 Sensor is Complete. If the status is still Incomplete, drive the vehicle according to the driving pattern again.
(d) Enter the following menus: Powertrain / Engine / Monitor / Current Monitor / O2 Sensor / Details / RANGE B1S1.
Powertrain > Engine > Monitor
(e) Check the test value of the air fuel ratio sensor output current during fuel-cut.
Test Value
|
Proceed to
|
Within normal range
(0.7 mA or higher, and less than 2.2 mA)
|
A
|
Outside normal range
(Less than 0.7 mA, or 2.2 mA or higher)
|
B
|
A
|
|
|
7.
|
PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE INJECTION VOLUME FOR A/F SENSOR)
|
(a) Connect the Techstream to the DLC3.
(b) Turn the power switch on (IG).
(c) Turn the Techstream on.
(d) Put the engine in Inspection Mode (Maintenance Mode).
Click here
Powertrain > Hybrid Control > Utility
Tester Display
|
Inspection Mode
|
(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher.
(f) Idle the engine for 5 minutes or more with park (P) selected.
(g) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Volume for A/F Sensor / Data List / A/F (O2) Sensor Voltage B1S1 and O2 Sensor Voltage B1S2.
Powertrain > Engine > Active Test
Active Test Display
|
Control the Injection Volume for A/F Sensor
|
Data List Display
|
A/F (O2) Sensor Voltage B1S1
|
O2 Sensor Voltage B1S2
|
(h) Change the fuel injection volume using the Techstream, and monitor the output voltage of the air fuel ratio sensor (A/F (O2) Sensor Voltage B1S1) and heated oxygen sensor (O2 Sensor Voltage B1S2) displayed on the Techstream.
HINT:
-
The Active Test "Control the Injection Volume for A/F Sensor" can be used to lower the fuel injection volume by 12.5% or increase the injection volume by 12.5%.
-
The air fuel ratio sensor is displayed as A/F (O2) Sensor Voltage B1S1, and the heated oxygen sensor is displayed as O2 Sensor Voltage B1S2 on the Techstream.
-
The air fuel ratio sensor has an output delay of a few seconds and the heated oxygen sensor has a maximum output delay of approximately 20 seconds.
-
If the sensor output voltage does not change (almost no reaction) while performing the Active Test, the sensor may be malfunctioning.
Standard
Techstream Display (Sensor)
|
Injection Volume
|
Status
|
Voltage
|
A/F (O2) Sensor Voltage B1S1
(Air fuel ratio)
|
12.5%
|
Rich
|
Below 3.1 V
|
-12.5%
|
Lean
|
Higher than 3.4 V
|
O2 Sensor Voltage B1S2
(Heated oxygen)
|
12.5%
|
Rich
|
Higher than 0.55 V
|
-12.5%
|
Lean
|
Below 0.4 V
|
Status of A/F (O2) Sensor Voltage B1S1
|
Status of O2 Sensor Voltage B1S2
|
Air Fuel Ratio Condition and Air Fuel Ratio Sensor Condition
|
Proceed to
|
Lean
|
Lean
|
Actual air fuel ratio lean
|
A
|
Rich
|
Rich
|
Actual air fuel ratio rich
|
Lean
|
Lean/Rich
|
Air fuel ratio sensor malfunction
|
B
|
Rich
|
Lean/Rich
|
Air fuel ratio sensor malfunction
|
Lean/Rich
|
Lean/Rich
|
Normal
|
C
|
-
Lean: While performing the Active Test "Control the Injection Volume for A/F Sensor", the air fuel ratio sensor output voltage (A/F (O2) Sensor Voltage B1S1) is consistently higher than 3.4 V, and the heated oxygen sensor output voltage (O2 Sensor Voltage B1S2) is consistently below 0.4 V.
-
Rich: While performing the Active Test "Control the Injection Volume for A/F Sensor", the air fuel ratio sensor output voltage (A/F (O2) Sensor Voltage B1S1) is consistently below 3.1 V, and the heated oxygen sensor output voltage (O2 Sensor Voltage B1S2) is consistently higher than 0.55 V.
-
Lean/Rich: While performing the Active Test "Control the Injection Volume for A/F Sensor", the output voltage of the fuel ratio sensor (A/F (O2) Sensor Voltage B1S1) or heated oxygen sensor (O2 Sensor Voltage B1S2) alternates correctly.
HINT:
Refer to "Data List / Active Test" [A/F (O2) Sensor Voltage B1S1 and O2 Sensor Voltage B1S2].
Click here
A
|
|
|
(a) Check the intake system for vacuum leaks.
Click here
OK:
No leaks from the intake system.
HINT:
Perform "Inspection After Repair" after repairing or replacing the intake system.
Click here
NG |
|
REPAIR OR REPLACE INTAKE SYSTEM
|
OK
|
|
|
9.
|
CHECK FOR EXHAUST GAS LEAK
|
(a) Check for exhaust gas leaks.
OK:
No gas leaks in exhaust system.
HINT:
Perform "Inspection After Repair" after repairing or replacing the exhaust system.
Click here
NG |
|
REPAIR OR REPLACE EXHAUST SYSTEM
|
OK
|
|
|
10.
|
PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE EGR STEP POSITION)
|
(a) Connect the Techstream to the DLC3.
(b) Turn the power switch on (IG).
(c) Turn the Techstream on.
(d) Put the engine in Inspection Mode (Maintenance Mode).
Click here
Powertrain > Hybrid Control > Utility
Tester Display
|
Inspection Mode
|
(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher.
HINT:
The A/C switch and all accessories should be off.
(f) Enter the following menus: Powertrain / Engine / Active Test / Control the EGR Step Position / Data List / Intake Manifold Absolute Pressure and Engine Independent.
Powertrain > Engine > Active Test
Active Test Display
|
Control the EGR Step Position
|
Data List Display
|
Intake Manifold Absolute Pressure
|
Engine Independent
|
(g) Confirm that the value of Data List item Engine Independent is "Operate" then check the value of Intake Manifold Absolute Pressure while performing the Active Test.
NOTICE:
-
Do not leave the EGR valve open for 10 seconds or more during the Active Test.
-
Be sure to return the EGR valve to step 0 when the Active Test is completed.
-
Do not open the EGR valve 30 steps or more during the Active Test.
OK:
The value of Intake Manifold Absolute Pressure changes in response to the EGR step position when the value of Engine Independent is "Operate".
Standard:
-
|
Control the EGR Step Position (Active Test)
|
0 Steps
|
0 to 30 Steps
|
Intake Manifold Absolute Pressure
(Data List)
|
(EGR valve is fully closed)
|
Intake Manifold Absolute Pressure value is at least +10 kPa (1.45 psi) higher than when EGR valve is fully closed
|
HINT:
-
If the value of Data List item Engine Independent is "Not Opr" when the engine is idling, charge control is being performed. Perform the Active Test after charge control is complete ("Operate" is displayed).
-
While performing the Active Test, if the increase in the value of Intake Manifold Absolute Pressure is small, the EGR valve assembly may be malfunctioning.
-
Even if the EGR valve assembly is malfunctioning, rough idling or an increase in the value of Intake Manifold Absolute Pressure may occur while performing the Active Test. However, the amount that the value of Intake Manifold Absolute Pressure increases will be smaller than normal.
NG
|
|
|
11.
|
INSPECT EGR VALVE ASSEMBLY
|
(a) Remove the EGR valve assembly.
Click here
(b) Check if the EGR valve is stuck open.
OK:
EGR valve is tightly closed.
HINT:
Perform "Inspection After Repair" after replacing the EGR valve assembly.
Click here
OK
|
|
|
(a) Check the fuel pressure.
Click here
OK
|
|
|
13.
|
INSPECT FUEL INJECTOR ASSEMBLY
|
(a) Inspect the fuel injector assembly (whether fuel volume is high or low, and whether injection pattern is poor).
Click here
HINT:
Perform "Inspection After Repair" after replacing the fuel injector assembly.
Click here
(a) Inspect the fuel pump.
w/ Canister Pump Module:
w/o Canister Pump Module:
HINT:
Perform "Inspection After Repair" after replacing the fuel pump.
Click here
OK |
|
REPAIR OR REPLACE FUEL LINE
|
NG |
|
REPLACE FUEL PUMP
w/ Canister Pump Module:
w/o Canister Pump Module:
|
15.
|
PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE EGR STEP POSITION)
|
(a) Connect the Techstream to the DLC3.
(b) Turn the power switch on (IG).
(c) Turn the Techstream on.
(d) Put the engine in Inspection Mode (Maintenance Mode).
Click here
Powertrain > Hybrid Control > Utility
Tester Display
|
Inspection Mode
|
(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher.
HINT:
The A/C switch and all accessories should be off.
(f) Enter the following menus: Powertrain / Engine / Active Test / Control the EGR Step Position / Data List / Intake Manifold Absolute Pressure and Engine Independent.
Powertrain > Engine > Active Test
Active Test Display
|
Control the EGR Step Position
|
Data List Display
|
Intake Manifold Absolute Pressure
|
Engine Independent
|
(g) Confirm that the value of Data List item Engine Independent is "Operate" then check the value of Intake Manifold Absolute Pressure while performing the Active Test.
NOTICE:
-
Do not leave the EGR valve open for 10 seconds or more during the Active Test.
-
Be sure to return the EGR valve to step 0 when the Active Test is completed.
-
Do not open the EGR valve 30 steps or more during the Active Test.
OK:
The value of Intake Manifold Absolute Pressure changes in response to the EGR step position when the value of Engine Independent is "Operate".
Standard:
-
|
Control the EGR Step Position (Active Test)
|
0 Steps
|
0 to 30 Steps
|
Intake Manifold Absolute Pressure
(Data List)
|
(EGR valve is fully closed)
|
Intake Manifold Absolute Pressure value is at least +10 kPa (1.45 psi) higher than when EGR valve is fully closed
|
HINT:
-
If the value of Data List item Engine Independent is "Not Opr" when the engine is idling, charge control is being performed. Check the engine speed after charge control is complete ("Operate" is displayed).
-
While performing the Active Test, if the increase in the value of Intake Manifold Absolute Pressure is small, the EGR valve assembly may be malfunctioning.
-
Even if the EGR valve assembly is malfunctioning, rough idling or an increase in the value of Intake Manifold Absolute Pressure may occur while performing the Active Test. However, the amount that the value of Intake Manifold Absolute Pressure increases will be smaller than normal.
NG
|
|
|
16.
|
INSPECT EGR VALVE ASSEMBLY
|
(a) Remove the EGR valve assembly.
Click here
(b) Check if the EGR valve is stuck open.
OK:
EGR valve is tightly closed.
HINT:
Perform "Inspection After Repair" after replacing the EGR valve assembly.
Click here
17.
|
REPLACE AIR FUEL RATIO SENSOR
|
(a) Replace the air fuel ratio sensor.
Click here
HINT:
Perform "Inspection After Repair" after replacing the air fuel ratio sensor.
Click here
NEXT
|
|
|
(a) Connect the Techstream to the DLC3.
(b) Turn the power switch on (IG).
(c) Turn the Techstream on.
(d) Clear the DTCs.
Powertrain > Engine > Clear DTCs
(e) Turn the power switch off and wait for at least 30 seconds.
NEXT
|
|
|
19.
|
CHECK WHETHER DTC OUTPUT RECURS (DTC P219519, P219524, P219618 OR P219623)
|
(a) Drive the vehicle in accordance with the driving pattern described in the Confirmation Driving Pattern.
(b) Enter the following menus: Powertrain / Engine / Utility / All Readiness.
Powertrain > Engine > Utility
Tester Display
|
All Readiness
|
(c) Input the DTC: P219519, P219524, P219618 or P219623.
(d) Check the DTC judgment result.
Result
|
Proceed to
|
NORMAL
(DTCs are not output)
|
A
|
ABNORMAL
(DTC P219519, P219524, P219618 or P219623 is output)
|
B
|
A |
|
END
|
20.
|
READ VALUE USING GTS (A/F (O2) SENSOR CURRENT B1S1)
|
(a) Connect the GTS to the DLC3.
(b) Turn the ignition switch to ON (IG).
(c) Turn the GTS on.
(d) Put the engine in Inspection Mode (Maintenance Mode).
Powertrain > Hybrid Control > Utility
Tester Display
|
Inspection Mode
|
(e) Start the engine.
(f) Enter the following menus: Powertrain / Engine / Data List / A/F (O2) Sensor Current B1S1.
Powertrain > Engine > Data List
Tester Display
|
A/F (O2) Sensor Current B1S1
|
(g) Check the test value of the air fuel ratio sensor output current during fuel-cut, referring to the Driving Pattern Detail for [C] through [E] in Confirmation Driving Pattern.
HINT:
-
To measure the air fuel ratio sensor current precisely, perform the fuel-cut operation as long as possible.
-
If it is difficult to measure the air fuel ratio sensor current, use the snapshot function of the GTS.
Test Value
|
Proceed to
|
Within normal range
(0.7 mA or higher, and less than 2.2 mA)
|
A
|
Outside normal range
(Less than 0.7 mA, or 2.2 mA or higher)
|
B
|
|