Last Modified: 05-13-2024 6.11:8.1.0 Doc ID: RM100000001GJ5Q
Model Year Start: 2020 Model: Corolla Prod Date Range: [01/2019 - 04/2020]
Title: 2ZR-FXE (ENGINE CONTROL): SFI SYSTEM: P011B62; Engine Coolant Temperature / Intake Air Temperature Signal Compare Failure; 2020 MY Corolla Corolla HV [01/2019 - 04/2020]

DTC

P011B62

Engine Coolant Temperature / Intake Air Temperature Signal Compare Failure

DESCRIPTION

This engine uses an engine coolant temperature sensor and an intake air temperature sensor to detect temperatures related to engine operation. A thermistor, whose resistance value varies according to the temperature, is built into each sensor. When the temperature becomes low, the resistance of the thermistor increases. When the temperature becomes high, the resistance decreases. These variations in resistance are transmitted to the ECM as voltage changes.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Memory

Note

P011B62

Engine Coolant Temperature / Intake Air Temperature Signal Compare Failure

All of the following conditions are met (2 trip detection logic):

  1. The auxiliary battery voltage is 10.5 V or higher.
  2. 7 hours or more have elapsed since the power switch was turned off in the previous trip.
  3. 38 seconds or more have elapsed since a cold engine start was performed.
  4. Either of the following conditions is met:
    1. The minimum intake air temperature after the engine starts is -10°C (14°F) or higher.
    2. The engine coolant temperature before the engine starts is -10°C (14°F) or higher.
  5. The difference between the readings of the engine coolant temperature and intake air temperature is higher than 25°C (45°F).
  • Intake air temperature sensor (mass air flow meter sub-assembly)
  • Engine coolant temperature sensor
  • ECM

Comes on

DTC stored

  • SAE Code: P011B
  • DTC for Mexico Models: Does not apply

HINT:

  • Waiting is required to prevent the temperature of the engine from affecting the readings. If the engine has been operated recently, it is not possible to accurately compare the readings.
  • For diagnosis, in order to duplicate the detection conditions of the DTC, it is necessary to park the vehicle for 7 hours. Parking the vehicle for 7 hours ensures that the actual engine coolant temperature and intake air temperature are very similar. When the vehicle has been parked for less than 7 hours, differences in the readings may exist, but this does not necessarily indicate a fault.

MONITOR DESCRIPTION

The ECM monitors the difference between the engine coolant temperature and the intake air temperature when the engine is started cold to accurately detect the engine temperature conditions. The monitor runs when the engine is started after 7 hours or more have elapsed since the power switch was turned off in the previous trip. If the difference between the engine coolant temperature and the intake air temperature on a cold start exceeds 25°C (45°F), the ECM interprets this as a malfunction in the engine coolant temperature sensor circuit or intake air temperature sensor circuit, illuminates the MIL and stores this DTC.

MONITOR STRATEGY

Related DTCs

P011B: Engine coolant temperature/intake air temperature sensor correlation

Required Sensors/Components (Main)

Engine coolant temperature sensor

Intake air temperature sensor (mass air flow meter sub-assembly)

Required Sensors/Components (Related)

-

Frequency of Operation

Once per driving cycle

Duration

-

MIL Operation

2 driving cycles

Sequence of Operation

None

TYPICAL ENABLING CONDITIONS

Monitor runs whenever the following DTCs are not stored

None

All of the following conditions are met

-

Soak time

7 hours or more

Auxiliary battery voltage

10.5 V or higher

Time after engine start

38 seconds or more

Either of the following conditions is met

(a) or (b)

(a) Minimum intake air temperature after engine start

-10°C (14°F) or higher

(b) Engine coolant temperature before engine start

-10°C (14°F) or higher

Engine coolant temperature sensor circuit fail (P0117, P0118, P0125)

Not detected

Intake air temperature sensor circuit fail (P0112, P0113)

Not detected

Mass air flow meter circuit fail (P0102, P0103)

Not detected

Soak timer fail (P2610)

Not detected

Engine coolant pump circuit fail (P261B, P261C, P261D)

Not detected

Accumulated time after engine coolant pump speed higher than 900 rpm

38 seconds or more

TYPICAL MALFUNCTION THRESHOLDS

Deviated engine coolant temperature and intake air temperature

Less than -25°C (-45°F), or higher than 25°C (45°F)

CONFIRMATION DRIVING PATTERN

HINT:

  • After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.

    Click here 2020 - 2022 MY Corolla Corolla HV [01/2019 - 09/2022]; 2ZR-FXE (ENGINE CONTROL): SFI SYSTEM: DTC CHECK / CLEAR

  • When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

    Click here 2020 - 2022 MY Corolla Corolla HV [01/2019 - 09/2022]; 2ZR-FXE (ENGINE CONTROL): SFI SYSTEM: DTC CHECK / CLEAR

  1. Connect the Techstream to the DLC3.
  2. Turn the power switch on (IG) [A].
  3. Turn the Techstream on.
  4. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
  5. Turn the power switch off.
  6. With the engine stopped, leave the vehicle as is for 7.5 hours or more [B].
  7. Turn the power switch on (IG).
  8. Turn the Techstream on.
  9. Put the engine in Inspection Mode (Maintenance Mode).

    Click here 2019 - 2025 MY Corolla Corolla Hatchback Corolla HV GR Corolla [06/2018 -        ]; INTRODUCTION: REPAIR INSTRUCTION: INSPECTION MODE PROCEDURE

  10. Start the engine and wait 70 seconds or more [C].
  11. Enter the following menus: Powertrain / Engine / Trouble Codes [D].
  12. Read the pending DTCs.

    HINT:

    • If a pending DTC is output, the system is malfunctioning.
    • If a pending DTC is not output, perform the following procedure.
  13. Enter the following menus: Powertrain / Engine / Utility / All Readiness.
  14. Input the DTC: P011B62.
  15. Check the DTC judgment result.

    Techstream Display

    Description

    NORMAL

    • DTC judgment completed
    • System normal

    ABNORMAL

    • DTC judgment completed
    • System abnormal

    INCOMPLETE

    • DTC judgment not completed
    • Perform driving pattern after confirming DTC enabling conditions

    HINT:

    • If the judgment result is NORMAL, the system is normal.
    • If the judgment result is ABNORMAL, the system is malfunctioning.
    • If the judgment result is INCOMPLETE, perform steps [B] through [D] again.
    • [A] to [D]: Normal judgment procedure.

      The normal judgment procedure is used to complete DTC judgment and also used when clearing permanent DTCs.

    • When clearing the permanent DTCs, do not disconnect the cable from the auxiliary battery terminal or attempt to clear the DTCs during this procedure, as doing so will clear the universal trip and normal judgment histories.

CAUTION / NOTICE / HINT

HINT:

Read freeze frame data using the Techstream. The ECM records vehicle and driving condition information as freeze frame data the moment a DTC is stored. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.

PROCEDURE

1.

CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO P011B62)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Trouble Codes.

(e) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTC P011B62 is output

A

DTC P011B62 and other DTCs are output

B

HINT:

If any DTCs other than P011B62 are output, troubleshoot those DTCs first.

B

GO TO DTC CHART

A

2.

READ VALUE USING TECHSTREAM (INTAKE AIR TEMPERATURE)

(a) Leave the vehicle for 7 hours or more.

HINT:

It is necessary to leave the vehicle for 7 hours or more to create conditions similar to the DTC detection conditions.

(b) Connect the Techstream to the DLC3.

(c) Turn the power switch on (IG).

(d) Turn the Techstream on.

(e) Enter the following menus: Powertrain / Engine / Data List / Intake Air Temperature.

Powertrain > Engine > Data List

Tester Display

Intake Air Temperature

(f) According to the display on the Techstream, read the Data List.

Standard:

Difference between the intake air temperature and the actual outside air temperature is 10°C (18°F) or less.

HINT:

  • The temperature displayed on the outside temperature gauge of the vehicle (if equipped) is not suitable for comparing to the intake air temperature reading. The outside temperature gauge has a significant delay built in to prevent swings in the temperature display. Use an accurate thermometer to determine the outside air temperature.
  • Perform "Inspection After Repair" after replacing the mass air flow meter sub-assembly.

    Click here 2020 - 2022 MY Corolla Corolla HV [01/2019 - 09/2022]; 2ZR-FXE (ENGINE CONTROL): SFI SYSTEM: INITIALIZATION

NG

REPLACE MASS AIR FLOW METER SUB-ASSEMBLY

OK

3.

READ VALUE USING TECHSTREAM (COOLANT TEMPERATURE)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Data List / Coolant Temperature.

Powertrain > Engine > Data List

Tester Display

Coolant Temperature

(e) According to the display on the Techstream, read the Data List.

Standard:

The difference between the engine coolant temperature and the actual outside air temperature is 10°C (18°F) or less.

HINT:

  • If the result is not as specified, check that there are no heat sources such as a block heater in the engine compartment.
  • Perform "Inspection After Repair" after replacing the engine coolant temperature sensor.

    Click here 2020 - 2022 MY Corolla Corolla HV [01/2019 - 09/2022]; 2ZR-FXE (ENGINE CONTROL): SFI SYSTEM: INITIALIZATION

OK

REPLACE ECM

NG

REPLACE ENGINE COOLANT TEMPERATURE SENSOR