Last Modified: 01-30-2024 6.11:8.1.0 Doc ID: RM10000000219LC
Model Year Start: 2022 Model: RAV4 HV Prod Date Range: [12/2021 -           ]
Title: HYBRID / BATTERY CONTROL: HYBRID CONTROL SYSTEM (for LITHIUM-ION BATTERY): P0AA649,P1C7C49-P1C7F49,P1C8049; Hybrid/EV Battery Voltage System Isolation Internal Electronic Failure; 2022 - 2024 MY RAV4 HV [12/2021 -        ]

DTC

P0AA649

Hybrid/EV Battery Voltage System Isolation Internal Electronic Failure

DTC

P1C7C49

Hybrid/EV Battery Voltage System Isolation (A/C Area) Internal Electronic Failure

DTC

P1C7D49

Hybrid/EV Battery Voltage System Isolation (Hybrid/EV Battery Area) Internal Electronic Failure

DTC

P1C7E49

Hybrid/EV Battery Voltage System Isolation (Transaxle Area) Internal Electronic Failure

DTC

P1C7F49

Hybrid/EV Battery Voltage System Isolation (Direct Current Area) Internal Electronic Failure

DTC

P1C8049

Hybrid/EV Battery Voltage System Isolation (Rear Motor Area) Internal Electronic Failure

DESCRIPTION

The hybrid vehicle control ECU assembly monitors the battery ECU assembly and detects insulation malfunctions in the high-voltage system.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Warning Indicate

P0AA649

Hybrid/EV Battery Voltage System Isolation Internal Electronic Failure

Insulation resistance between the high-voltage circuit and the body has decreased.*1

(1 trip detection logic)

  • Inverter with converter assembly
  • HV floor under wire
  • HV battery junction block assembly
  • Battery ECU assembly
  • Hybrid battery terminal block
  • No. 1 HV supply stack sub-assembly
  • No. 2 HV supply stack sub-assembly
  • Electric vehicle battery plug assembly
  • Hybrid vehicle transaxle assembly
  • Motor cable
  • Air conditioning system
  • Air conditioning wire
  • Rear traction motor with transaxle assembly

Does not come on

Master Warning:

Comes on

P1C7C49

Hybrid/EV Battery Voltage System Isolation (A/C Area) Internal Electronic Failure

Insulation resistance of the compressor with motor assembly or air conditioning inverter has decreased.*2

(1 trip detection logic)

Air conditioning system

Does not come on

Master Warning:

Comes on

P1C7D49

Hybrid/EV Battery Voltage System Isolation (Hybrid/EV Battery Area) Internal Electronic Failure

Insulation resistance of the HV battery, battery ECU assembly or SMR has decreased.*2

(1 trip detection logic)

  • HV battery junction block assembly
  • Battery ECU assembly
  • Hybrid battery terminal block
  • No. 1 HV supply stack sub-assembly
  • No. 2 HV supply stack sub-assembly
  • Electric vehicle battery plug assembly

Does not come on

Master Warning:

Comes on

P1C7E49

Hybrid/EV Battery Voltage System Isolation (Transaxle Area) Internal Electronic Failure

Insulation resistance of the hybrid vehicle transaxle assembly or inverter for the generator (MG1) and motor (MG2) has decreased.*2

(1 trip detection logic)

  • Hybrid vehicle transaxle assembly
  • Motor cable
  • Inverter with converter assembly

Does not come on

Master Warning:

Comes on

P1C7F49

Hybrid/EV Battery Voltage System Isolation (Direct Current Area) Internal Electronic Failure

Insulation resistance of the inverter for the generator (MG1), motor (MG2) and rear motor (MGR), A/C inverter, SMR or HV floor under wire has decreased.*2

(1 trip detection logic)

  • Inverter with converter assembly
  • HV floor under wire
  • HV battery junction block assembly
  • Air conditioning system
  • Air conditioning wire

Does not come on

Master Warning:

Comes on

P1C8049

Hybrid/EV Battery Voltage System Isolation (Rear Motor Area) Internal Electronic Failure

Insulation resistance of the rear motor area has decreased.*2

(1 trip detection logic)

  • Inverter with converter assembly
  • Rear traction motor with transaxle assembly
  • HV floor under wire (rear traction motor cable)
  • Rear traction motor cable

Does not come on

Master Warning:

Comes on

HINT:

  • *1: The insulation malfunction detection circuit in the battery ECU assembly monitors the insulation resistance between the high voltage circuits and body. If the insulation resistance decreases, the hybrid vehicle control ECU assembly stores DTC P0AA649 and illuminates the master warning first regardless of malfunction area.

    Depending on the vehicle condition, the high voltage circuit insulation resistance may return to normal. So if DTC P0AA649 is output, complete the following steps as soon as possible.

  • *2: If the following operations are performed within the same trip after DTC P0AA649 is stored, just one of the related DTCs (P1C7C49, P1C7D49, P1C7E49, P1C7F49 or P1C8049) will be stored.
    1. Apply the parking brake firmly.

      NOTICE:

      Perform this test with the AUTO function (shift-linked function) of the electric parking brake system off.

      HINT:

      When the parking brake indicator (red) is illuminated after the electric parking brake switch assembly has been pulled to the lock side, the maximum amount of braking force is applied if the electric parking brake switch assembly is pulled to the lock side one more time.

    2. Wait for 1 minute or more with the vehicle stopped, the brake pedal firmly depressed, the ignition switch ON (READY), shift lever in D and the air conditioning system on (Lo/MAX COOL, blower speed HI).
    3. Turn the ignition switch off and wait for 2 minutes or more.

      HINT:

      • DTCs and freeze frame data are useful information in determining the malfunctioning part. Before performing diagnosis, make sure to check and make a note of all output DTCs and freeze frame data. (Even if a high-voltage insulation malfunction cannot be reproduced, once stored, insulation malfunction DTCs will not be cleared unless the clear operation is performed.)
      • When the insulation resistance of the HV battery area decreases and the ignition switch is turned to ON, DTC P1C7D49 is stored within 2 minutes.
  • When measuring insulation resistance using a megohmmeter, measure the resistance while jiggling the high voltage wire harness.

Related Data List (Reproduction of Phenomenon and Check)

DTC No.

Data List

P0AA649

  • Short Wave Highest Value Level
  • Hybrid/EV Battery Voltage
  • VL-Voltage before Boosting
  • VL-Voltage before Boosting for Rear Motor
  • VH-Voltage after Boosting
  • Boost Ratio
  • A/C Consumption Power
  • SMRP Status
  • SMRB Status
  • SMRG Status
  • Generator Inverter Shutdown Status
  • Motor Inverter Shutdown Status
  • Rear Motor Inverter Shutdown Status
  • Insulation Resistance Division Check Completion using MG Inv
  • Insulation Resistance Division Check Completion using A/C Inv
  • Insulation Resistance Division Check Completion using SMR
  • Insulation Resistance Division Check Completion using Rear Motor Inv
  • Short Wave Highest Value Availability just after MG Inv On/Off
  • Short Wave Highest Value Availability just after A/C Inv On/Off
  • Short Wave Highest Value Availability just after SMR On/Off
  • Short Wave Highest Value Availability just after Rear Motor Inv On/Off

P1C7C49

P1C7D49

P1C7E49

P1C7F49

P1C8049

Use the following items as a reference when duplicating the vehicle conditions at the time when the malfunction occurred.

Data List

  • Vehicle Speed
  • Engine Run Time
  • Auxiliary Battery Voltage
  • Distance from DTC Cleared
  • Ready Signal
  • Hybrid/EV Battery SOC

CONFIRMATION DRIVING PATTERN

CONFIRMATION AFTER REPLACING PARTS

HINT:

After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure. (Do not turn the ignition switch off (READY off) during this inspection.)

Click here 2020 - 2024 MY RAV4 HV [06/2020 -        ]; HYBRID / BATTERY CONTROL: HYBRID CONTROL SYSTEM (for LITHIUM-ION BATTERY): UTILITY

  1. Connect the Techstream to the DLC3.
  2. Turn the ignition switch to ON and turn the Techstream on.
  3. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
  4. Turn the ignition switch off and wait for 2 minutes or more.
  5. Apply the parking brake and secure the wheels using chocks.

    NOTICE:

    Perform this test with the AUTO function (shift-linked function) of the electric parking brake system off.

    HINT:

    When the parking brake indicator (red) is illuminated after the electric parking brake switch assembly has been pulled to the lock side, the maximum amount of braking force is applied if the electric parking brake switch assembly is pulled to the lock side one more time.

  6. When the vehicle is stationary, turn the ignition switch to ON (READY) with shift lever in P and wait for 1 minute or more.
  7. Turn the air conditioning system on (MAX COLD, blower speed HI).
  8. While depressing the brake pedal without depressing the accelerator pedal, move the shift lever to D and wait for 5 minutes.

    - If step A is performed within the same trip after DTC P0AA649 is stored, the parts with insufficient insulation resistance will be determined and a DTC (P1C7C49, P1C7D49, P1C7E49, P1C7F49 or P1C8049) will be stored.

    - If no DTCs are output, proceed to the next step.

  9. Drive the vehicle for approximately 5 minutes referring to the following freeze frame data items: "Vehicle Speed", "Shift Position", "Accelerator Position", "Engine Speed", "Coolant Temperature", "Master Cylinder Control Torque", "Inverter Coolant Water Temperature", "Generator Inverter Calculated Temperature" and "Motor Inverter Temperature"

    (If the freeze frame data item "Vehicle Speed" is 10 km/h (6 mph) or less, drive the vehicle at 10 km/h (6 mph) or more.)

    - If step A is performed within the same trip after DTC P0AA649 is stored, the parts with insufficient insulation resistance will be determined and a DTC (P1C7C49, P1C7D49, P1C7E49, P1C7F49 or P1C8049) will be stored.

    - If DTC P0AA649 is output, complete Step A immediately as quickly as possible.

  10. Wait for 1 minute or more with the vehicle stopped, the ignition switch ON (READY), shift lever in P and the air conditioning system on (Lo/COOL MAX, blower speed HI), then turn the ignition switch off and wait for 2 minutes or more. (Step A)
  11. Turn the ignition switch to ON and turn the Techstream on.
  12. Enter the following menus: Powertrain / Hybrid Control / Utility / All Readiness.
  13. Check the DTC judgment result.

    HINT:

    • If the judgment result shows NORMAL, the system is normal.
    • If the judgment result shows ABNORMAL, the system has a malfunction.
    • If the judgment result shows INCOMPLETE, perform driving pattern again.

WIRING DIAGRAM

*1

HV Battery

*2

Battery ECU assembly

*3

SMRB

*4

SMRG

*5

SMRP

*6

System Main Resistor

*7

Service Plug Grip

*8

Inverter with Converter Assembly

*9

Boost Converter

*10

Inverter

*11

Generator (MG1)

*12

Motor (MG2)

*13

Compressor with Motor Assembly

*14

A/C Inverter

*15

A/C Motor

*16

Rear Motor (MGR)

*a

High-voltage Areas

*b

DTC P0AA649 Vehicle Insulation Resistance Reduction Area

*c

DTC P1C7C49 Air Conditioning System Area

*d

DTC P1C7D49 HV Battery Area

*e

DTC P1C7E49 Hybrid Vehicle Transaxle Assembly Area or Inverter with Converter Assembly AC (Alternation Current) Section Area

*f

DTC P1C7F49 High Voltage Direct Current Area

*g

DTC P1C8049 Rear Motor Area

-

-

SYSTEM DESCRIPTION

HINT:

If a decrease in insulation resistance cannot be confirmed using a megohmmeter, check "Short Wave Highest Value Level" in the Data List.

SHORT WAVE HIGHEST VALUE LEVEL

(a) "Short Wave Highest Value Level" shows a decrease in insulation resistance. When insulation resistance decreases, "Insulation Lower" will be displayed. However, even though the insulation resistance of the vehicle is normal, "Short Wave Highest Value Level" may decrease, so that "Not Judge" will be displayed for any of the following conditions.

  • Within approximately 1 minute since the ignition switch was turned to ON.
  • When the system voltages ("Hybrid/EV Battery Voltage", "VL-Voltage before Boosting", "VL-Voltage before Boosting for Rear Motor" and "VH-Voltage after Boosting") are changing.
  • During boosting. If the Data List item "Boost Ratio" is not 0% or within a few seconds of it becoming 0%. (The values of "Hybrid/EV Battery Voltage", "VL-Voltage before Boosting", "VL-Voltage before Boosting for Rear Motor" and "VH-Voltage after Boosting" are about the same when not boosting.)
  • When "No" is displayed for any of the following Data List items:

    - Short Wave Highest Value Availability just after MG Inv On/Off

    - Short Wave Highest Value Availability just after A/C Inv On/Off

    - Short Wave Highest Value Availability just after SMR On/Off

    - Short Wave Highest Value Availability just after Rear Motor Inv On/Off

(b) When "Short Wave Highest Value Level" shows "Insulation Lower LV3", insulation resistance will be close to 0 Ω. In this case, damage to a high-voltage cable or hybrid component (high-voltage), or a short to body ground due to intrusion of foreign matter, such as metal particles, can be suspected.

  • If problem symptoms cannot be reproduced and a malfunction still exists after replacing a part as instructed, checking the following freeze frame data can help determine a trouble area.

Items to be Checked Using Freeze Frame Data:

Freeze Frame Data

Diagnostic Note

Short Wave Highest Value Level

Indicates that the insulation resistance has decreased.

  • VL-Voltage before Boosting
  • VL-Voltage before Boosting for Rear Motor
  • VH-Voltage after Boosting
  • Hybrid/EV Battery Voltage
  • Boost Ratio

During boosting (when "Boost Ratio" is not 0%), or when "VL-Voltage before Boosting", "VL-Voltage before Boosting for Rear Motor", "VH-Voltage after Boosting" or "Hybrid/EV Battery Voltage" is varying, "Short Wave Highest Value Level" may decrease even though the insulation resistance is normal.

  • SMRP Status
  • SMRB Status
  • SMRG Status

When "SMRP Status", "SMRB Status" and "SMRG Status" are all OFF, the insulation malfunction detection circuit detects a decrease in insulation resistance in the HV battery area ((*d) in the wiring diagram).

Example:

  • When the ignition switch is turned to ON (not ON (READY)), all 3 system main relays are off and it is suspected that the HV battery assembly is disconnected from the high voltage circuits. If "Short Wave Highest Value Level" decreases a few minutes after the ignition switch is turned to ON (not ON (READY)), the HV battery assembly may have an insulation malfunction.

Motor Inverter Shutdown Status

When "Motor Inverter Shutdown Status" is ON, the insulation malfunction detection circuit cannot detect a decrease in insulation resistance in the motor system AC (alternating current) section (motor (MG2) side of (*e) in the wiring diagram).

The motor system AC (alternating current) section includes the motor (MG2) in the hybrid vehicle transaxle assembly, motor cables and the AC (alternating current) section of the motor drive circuit in the inverter with converter assembly.

Generator Inverter Shutdown Status

When "Generator Inverter Shutdown Status" is ON, the insulation malfunction detection circuit cannot detect a decrease in insulation resistance in the generator system AC (alternating current) section (generator (MG1) side of (*e) in the wiring diagram).

The generator system AC (alternating current) section includes the generator (MG1) in the hybrid vehicle transaxle assembly, generator cables and the AC (alternating current) section of the generator drive circuit in the inverter with converter assembly.

Rear Motor Inverter Shutdown Status

When "Rear Motor Inverter Shutdown Status" is ON, the insulation malfunction detection circuit cannot detect a decrease in insulation resistance in the rear motor system AC (alternating current) section ((*g) in the wiring diagram).

The rear motor system AC (alternating current) section includes the rear motor (MGR) in the rear traction motor with transaxle assembly, rear traction motor cables and the AC (alternating current) section of the rear motor drive circuit in the inverter with converter assembly.

A/C Consumption Power

The compressor with motor assembly AC (alternating current) section ((*c) in the wiring diagram) includes the air conditioning motor, wiring between the air conditioning motor and air conditioning inverter, and the AC (alternating current) section of the air conditioning motor drive circuit in the air conditioning inverter.

With the vehicle stopped, turn on/off the air conditioning system and observe "Short Wave Highest Value Level" to use as a diagnosis reference.

RELATED FREEZE FRAME DATA

HINT:

  • Reproducing the vehicle conditions the moment a DTC was stored according to the freeze frame data and results of the customer problem analysis helps ensure that the same DTC is stored again.

    Driving Status

    Item

    Diagnostic Note

    Vehicle Speed

    -

    Accelerator Position Sensor No.1 Voltage %

    -

    Engine Speed

    -

    Shift Position

    -

    Master Cylinder Control Torque

    -

    Coolant Temperature

    -

    Operation Conditions

    Item

    Diagnostic Note

    Motor Temperature

    If any liquid leaks into the ATF, insulation resistance may decrease only when the temperature is high.

    The motor temperature is likely to increase if the motor speed is low and output torque is high such as when cruising uphill slowly or accelerating from a low speed.

    Generator Temperature

    If any liquid leaks into the ATF, insulation resistance may decrease only when the temperature is high.

    The generator temperature is likely to increase under repeat acceleration and deceleration while the vehicle is driven in the mid speed range (60 to 80 km/h (37 to 50 mph)).

    Rear Motor Temperature

    If any liquid leaks into the ATF, insulation resistance may decrease only when the temperature is high.

    The rear motor temperature is likely to increase if the motor speed is low and output torque is high such as when cruising uphill slowly or accelerating from a low speed.

  • Customer Problem Analysis

    Ask the customer about the operating conditions and environment when the malfunction occurred.

    Item

    Diagnostic Note

    Driving Condition (acceleration, deceleration, turning, etc.)

    Changes in the insulation of the parts with insufficient insulation due to changes in G force or vibration are suspected.

    Road Condition (unpaved, etc.)

    Weather (rain, snow, etc.)

    Water intrusion is suspected

    Washing the vehicle (Whether the malfunction occurred after washing the vehicle?)

CAUTION / NOTICE / HINT

CAUTION:

  • When troubleshooting DTC P0AA649, use either a tool wrapped with vinyl insulation tape or an insulated tool. (It is extremely dangerous when a high-voltage charge passes through a non-insulated tool causing a short.)
  • Before the following operations are conducted, take precautions to prevent electric shock by turning the ignition switch off, wearing insulated gloves, and removing the service plug grip from HV battery.
    • Inspecting the high-voltage system
    • Disconnecting the low voltage connector of the inverter with converter assembly
    • Disconnecting the low voltage connector of the HV battery
  • To prevent electric shock, make sure to remove the service plug grip to cut off the high voltage circuit before servicing the vehicle.
  • After removing the service plug grip from the HV battery, put it in your pocket to prevent other technicians from accidentally reconnecting it while you are working on the high-voltage system.
  • After removing the service plug grip, wait for at least 10 minutes before touching any of the high-voltage connectors or terminals. After waiting for 10 minutes, check the voltage at the terminals in the inspection point in the inverter with converter assembly. The voltage should be 0 V before beginning work.

    Click here 2020 - 2024 MY RAV4 HV [06/2020 -        ]; HYBRID / BATTERY CONTROL: HYBRID CONTROL SYSTEM (for LITHIUM-ION BATTERY): PRECAUTION

    *a

    Without waiting for 10 minutes

    HINT:

    Waiting for at least 10 minutes is required to discharge the high-voltage capacitor inside the inverter with converter assembly.

  • Make sure to insulate the high-voltage connectors and terminals of the HV battery with insulating tape after removing it.

    If the HV battery stored without insulating the connectors and terminals, electric shock or fire may result.

  • When disposing of an HV battery, make sure to return it through an authorized collection agent who is capable of handling it safely. If the HV battery is returned via the manufacturer specified route, it will be returned properly and in a safe manner by an authorized collection agent.

    *a

    Dealer

    *b

    Battery Collection Agent

  • Before returning the HV battery, make sure to perform a recovery inspection.

    Click here 2020 - 2024 MY RAV4 HV [06/2020 -        ]; HYBRID / BATTERY CONTROL: HV BATTERY (for LITHIUM-ION BATTERY): RECOVERY INSPECTION

  • Before returning the HV supply stack sub-assembly, make sure to perform a recovery inspection.

    Click here 2022 - 2024 MY RAV4 HV [12/2021 -        ]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): RECOVERY INSPECTION

  • Make a note of the output DTCs as some of them may be necessary for recovery inspection of the HV battery.
  • After removing the HV battery, keep it away from water. Exposure to water may cause the HV battery to produce heat, resulting in a fire.

NOTICE:

After turning the ignition switch off, waiting time may be required before disconnecting the cable from the negative (-) auxiliary battery terminal. Therefore, make sure to read the disconnecting the cable from the negative (-) auxiliary battery terminal notices before proceeding with work.

Click here 2019 - 2024 MY RAV4 RAV4 HV [11/2018 -        ]; INTRODUCTION: REPAIR INSTRUCTION: PRECAUTION

HINT:

When measuring insulation resistance using a megohmmeter, set the megohmmeter to 500 V.

PROCEDURE

1.

CHECK DTC OUTPUT (HYBRID CONTROL, HV BATTERY)

(a) Connect the Techstream to the DLC3.

(b) Turn the ignition switch to ON.

(c) Enter the following menus: Powertrain / Hybrid Control and HV Battery / Trouble Codes.

(d) Check for DTCs.

Powertrain > Hybrid Control > Trouble Codes

Powertrain > HV Battery > Trouble Codes

Result

Proceed to

P0AA649, P1C7C49, P1C7D49, P1C7E49, P1C7F49 or P1C8049 only is output, or DTCs except the ones in the table below are also output.

A

DTCs of hybrid control system in the tables below are output.

B

DTCs of hybrid battery system in the tables below are output.

C

Malfunction Content

System

Relevant DTC

Microcomputer malfunction

Hybrid control system

P060647

Hybrid/EV Powertrain Control Module Processor Watchdog / Safety MCU Failure

P060A29

Hybrid/EV Powertrain Control Module Monitoring Processor Signal Invalid

P060A44

Hybrid/EV Powertrain Control Module Monitoring Processor Data Memory Failure

P060A45

Hybrid/EV Powertrain Control Module Monitoring Processor Program Memory Failure

P060A49

Hybrid/EV Powertrain Control Module Monitoring Processor Internal Electronic Failure

P060B1C

Hybrid/EV Powertrain Control Module A/D Processing Voltage Out of Range

P060B71

Hybrid/EV Powertrain Control Module A/D Processing Actuator Stuck

P1CE31C

Hybrid/EV Powertrain Control Module Monitoring Processor A/D Processing Voltage Out of Range

P1CE349

Hybrid/EV Powertrain Control Module Monitoring Processor A/D Processing Internal Electronic Failure

P1CE371

Hybrid/EV Powertrain Control Module Monitoring Processor A/D Processing Actuator Stuck

Hybrid battery system

P060687

Hybrid/EV Battery Energy Control Module Processor to Monitoring Processor Missing Message

P060A47

Hybrid/EV Battery Energy Control Module Monitoring Processor Watchdog / Safety MCU Failure

P060A87

Hybrid/EV Battery Energy Control Module Processor from Monitoring Processor Missing Message

P060B49

Hybrid/EV Powertrain Control Module A/D Processing Internal Electronic Failure

P062F46

Hybrid/EV Battery Energy Control Module EEPROM Calibration / Parameter Memory Failure

Power Source Circuit Malfunction

Hybrid control system

P06881F

ECM/PCM Power Relay Sense Circuit Intermittent

System malfunction

Hybrid control system

P1C9E9F

Hybrid/EV System Reset Stuck Off

HINT:

  • P0AA649 may be output as a result of the malfunction indicated by the DTCs above.
    1. The chart above is listed in inspection order of priority.
    2. Check DTCs that are output at the same time by following the listed order. (The main cause of the malfunction can be determined without performing unnecessary inspections.)

(e) Turn the ignition switch off.

B

GO TO DTC CHART (HYBRID CONTROL SYSTEM)

C

GO TO DTC CHART (HYBRID BATTERY SYSTEM)

A

2.

CHECK DTC OUTPUT (HYBRID CONTROL)

(a) Connect the Techstream to the DLC3.

(b) Turn the ignition switch to ON.

(c) Enter the following menus: Powertrain / Hybrid Control / Trouble Codes.

(d) Check for DTCs.

Powertrain > Hybrid Control > Trouble Codes

NOTICE:

  • DTC P1C7C49, P1C7D49, P1C7E49, P1C7F49 and P1C8049 are not stored with P0AA649 at the same time. If a drop in insulation resistance is detected and DTC P0AA649 is output, wait for 1 minute with the ignition switch ON (READY), the shift lever in D and the air conditioning system on within the same trip, then turn the ignition switch off and wait for 2 minutes to determine the DTC (P1C7C49, P1C7D49, P1C7E49, P1C7F49 or P1C8049).
  • If only DTC P0AA649 is output, perform the diagnostic procedure for DTC P0AA649 to inspect all of the high voltage circuits.
  • When any other DTC indicating parts which the insulation resistance dropped are output, perform the diagnostic procedure for each DTC.

Result

Proceed to

P0AA649 (decrease in the insulation resistance of the high-voltage circuit) only is output.

A

P0AA649 and P1C7C49 (decrease in the insulation resistance of the air conditioning system area) are output.

B

P0AA649 and P1C7D49 (decrease in the insulation resistance of the HV battery area) are output.

C

P0AA649 and P1C7E49 (decrease in the insulation resistance of the hybrid vehicle transaxle assembly area) are output.

D

P0AA649 and P1C7F49 (decrease in the insulation resistance of the high-voltage direct current area) are output.

E

P0AA649 and P1C8049 (decrease in the insulation resistance of the rear motor area) are output.

F

(e) Turn the ignition switch off.

B

GO TO STEP 11

C

GO TO STEP 17

D

GO TO STEP 25

E

GO TO STEP 31

F

GO TO STEP 40

A

3.

CHECK HYBRID VEHICLE TRANSAXLE ASSEMBLY (MOTOR CABLE (FOR MG2))

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the motor cable from the inverter with converter assembly.

HINT:

Make sure that no foreign matter, coolant or water enters the inverter with converter assembly.

(c) Connect the cable to the negative (-) auxiliary battery terminal.

(d) Turn the ignition switch to ON.

NOTICE:

Turning the ignition switch to ON with the service plug grip removed causes DTCs to be stored. Clear the DTCs after performing this inspection.

(e) Move the shift lever to N and lift the vehicle.

(f) Turn the ignition switch off.

(g) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below while rotating the front wheels 2 revolutions in the same direction simultaneously.

NOTICE:

  • Carefully perform this inspection as the motor (MG2) may generate current when the front wheels are rotated by hand.
  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

HINT:

As the insulation resistance may vary when motor (MG2) rotates, perform this inspection while rotating the front wheels.

Standard Resistance:

Tester Connection

Condition

Specified Condition

d2-2 (U) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

d2-3 (V) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

d2-1 (W) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

Motor Cable (for MG2)

(Inverter with Converter Assembly Side)

(h) Lower the vehicle and move the shift lever to P.

(i) Disconnect the cable from the negative (-) auxiliary battery terminal.

NG

GO TO STEP 12

OK

4.

CHECK HYBRID VEHICLE TRANSAXLE ASSEMBLY (MOTOR CABLE (FOR MG1))

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Connect the cable to the negative (-) auxiliary battery terminal.

(c) Turn the ignition switch to ON.

NOTICE:

Turning the ignition switch to ON with the service plug grip removed causes DTCs to be stored. Clear the DTCs after performing this inspection.

(d) Move the shift lever to N and lift the vehicle.

(e) Turn the ignition switch off.

(f) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below while rotating the front wheels 2 revolutions in the same direction simultaneously.

NOTICE:

  • Carefully perform this inspection as the generator (MG1) may generate current when the front wheels are rotated by hand.
  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

HINT:

As the insulation resistance may vary when generator (MG1) rotates, perform this inspection while rotating the front wheels.

Standard Resistance:

Tester Connection

Condition

Specified Condition

d2-5 (U) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

d2-6 (V) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

d2-4 (W) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

Motor Cable (for MG1)

(Inverter with Converter Assembly Side)

(g) Lower the vehicle and move the shift lever to P.

(h) Disconnect the cable from the negative (-) auxiliary battery terminal.

NG

GO TO STEP 13

OK

5.

CHECK REAR TRACTION MOTOR WITH TRANSAXLE ASSEMBLY (HV FLOOR UNDER WIRE (REAR TRACTION MOTOR CABLE))

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the HV floor under wire (rear traction motor cable) from the inverter with converter assembly.

HINT:

Make sure that no foreign matter, coolant or water enters the inverter with converter assembly.

(c) Connect the cable to the negative (-) auxiliary battery terminal.

(d) Turn the ignition switch to ON.

NOTICE:

Turning the ignition switch to ON with the service plug grip removed causes DTCs to be stored. Clear the DTCs after performing this inspection.

(e) Move the shift lever to N and lift the vehicle.

(f) Turn the ignition switch off.

(g) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below while rotating the rear wheels 2 revolutions in the same direction simultaneously.

NOTICE:

  • Carefully perform this inspection as the rear motor (MGR) may generate current when the rear wheels are rotated by hand.
  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

HINT:

As the insulation resistance may vary when rear motor (MGR) rotates, perform this inspection while rotating the rear wheels.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Y5-2 (R-U) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

Y5-1 (R-V) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

Y5-3 (R-W) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

HV Floor Under Wire (Rear Traction Motor Cable)

(Inverter with Converter Assembly Side)

(h) Lower the vehicle and move the shift lever to P.

(i) Disconnect the cable from the negative (-) auxiliary battery terminal.

NG

GO TO STEP 14

OK

6.

CHECK HV AIR CONDITIONING WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the HV air conditioning wire connector from the inverter with converter assembly.

HINT:

Make sure that no foreign matter has entered or contaminated the HV air conditioning wire.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.
  • Be sure to inspect with connecting the tester probes to the tips of the terminal.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Z2-1 (ACPB) - Body ground and shield ground

Ignition switch off

3 MΩ or higher

Z2-2 (ACPE) - Body ground and shield ground

Ignition switch off

3 MΩ or higher

*1

Shield Ground

*a

HV Air Conditioning Wire

(Inverter with Converter Assembly Side)

*b

Tip of Terminal

NG

GO TO STEP 36

OK

7.

CHECK FLOOR UNDER WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the HV floor under wire connector from the inverter with converter assembly.

HINT:

Make sure that no foreign matter has entered or contaminated the HV floor under wire.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.
  • Be sure not to damage or deform the terminal being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Y8-1 (CBI) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

Y8-2 (CEI) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

HINT:

Visually inspect the HV floor under wire for damage. If there is any damage, then this is the likely cause of low insulation resistance.

*1

Shield Ground

*a

HV Floor Under Wire

(Inverter with Converter Assembly Side)

NG

GO TO STEP 34

OK

8.

CHECK INVERTER WITH CONVERTER ASSEMBLY

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Connect the HV floor under wire connector to the inverter with converter assembly.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

High voltage terminal - Body ground

Ignition switch off

1 MΩ or higher

HINT:

Perform this inspection with the motor cable, HV floor under wire and air conditioning wire disconnected from the inverter with converter assembly.

*a

High Voltage Terminal

NG

GO TO STEP 33

OK

9.

CHECK HV BATTERY (HIGH VOLTAGE CABLE)

CAUTION:

Be sure to wear insulated gloves and protective goggles.

HINT:

Make sure that no foreign matter or water has entered the HV battery.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the No. 1 HV battery hose.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: BATTERY ECU (for LITHIUM-ION BATTERY): REMOVAL+ 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: BATTERY ECU (for LITHIUM-ION BATTERY): REMOVAL+ 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: BATTERY ECU (for LITHIUM-ION BATTERY): REMOVAL+

(c) Disconnect the battery ECU assembly connectors.

NOTICE:

Insulate each disconnected high-voltage connector with insulating tape. Wrap the connector from the wire harness side to the end of the connector.

(d) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

1 - Body ground

Ignition switch off

10 MΩ or higher

2 - Body ground

Ignition switch off

10 MΩ or higher

*a

Service Plug Grip Removed

(Service Plug Grip Connecting Terminals)

NG

GO TO STEP 15

OK

10.

REPLACE BATTERY ECU ASSEMBLY

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: BATTERY ECU (for LITHIUM-ION BATTERY): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: BATTERY ECU (for LITHIUM-ION BATTERY): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: BATTERY ECU (for LITHIUM-ION BATTERY): REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

11.

GO TO AIR CONDITIONING SYSTEM (P1C7C49)

Click here 2021 - 2024 MY RAV4 HV [08/2020 -        ]; HEATING / AIR CONDITIONING: AIR CONDITIONING SYSTEM (for HV Model): P1C7C49; Hybrid/EV Battery Voltage System Isolation (A/C Area) Internal Electronic Failure

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

12.

CHECK MOTOR CABLE (FOR MG2)

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the motor cable from the hybrid vehicle transaxle assembly.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

d2-2 (U) - Shield ground

Ignition switch off

10 MΩ or higher

d2-3 (V) - Shield ground

Ignition switch off

10 MΩ or higher

d2-1 (W) - Shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

Motor Cable (for MG2)

(Inverter with Converter Assembly Side)

OK

GO TO STEP 28

NG

GO TO STEP 29

13.

CHECK MOTOR CABLE (FOR MG1)

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the motor cable from the hybrid vehicle transaxle assembly.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

d2-5 (U) - Shield ground

Ignition switch off

10 MΩ or higher

d2-6 (V) - Shield ground

Ignition switch off

10 MΩ or higher

d2-4 (W) - Shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

Motor Cable (for MG1)

(Inverter with Converter Assembly Side)

OK

GO TO STEP 28

NG

GO TO STEP 30

14.

CHECK FLOOR UNDER WIRE (REAR TRACTION MOTOR CABLE)

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the HV floor under wire (rear traction motor cable) from the rear traction motor with transaxle assembly.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Y5-2 (R-U) - Shield ground

Ignition switch off

10 MΩ or higher

Y5-1 (R-V) - Shield ground

Ignition switch off

10 MΩ or higher

Y5-3 (R-W) - Shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

HV Floor Under Wire (Rear Traction Motor Cable)

(Inverter with Converter Assembly Side)

OK

GO TO STEP 43

NG

GO TO STEP 45

15.

CHECK ELECTRIC VEHICLE BATTERY PLUG ASSEMBLY

CAUTION:

Be sure to wear insulated gloves and protective goggles.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the electric vehicle battery plug assembly connectors.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

1 - Body ground

Ignition switch off

10 MΩ or higher

2 - Body ground

Ignition switch off

10 MΩ or higher

*a

Service Plug Grip Removed

(Service Plug Grip Connecting Terminals)

OK

GO TO STEP 17

NG

16.

REPLACE ELECTRIC VEHICLE BATTERY PLUG ASSEMBLY

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: BATTERY PLUG (for LITHIUM-ION BATTERY): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: BATTERY PLUG (for LITHIUM-ION BATTERY): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: BATTERY PLUG (for LITHIUM-ION BATTERY): REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

17.

CHECK HV BATTERY JUNCTION BLOCK ASSEMBLY

CAUTION:

Be sure to wear insulated gloves and protective goggles.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the electric vehicle battery plug assembly.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: BATTERY PLUG (for LITHIUM-ION BATTERY): REMOVAL+ 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: BATTERY PLUG (for LITHIUM-ION BATTERY): REMOVAL+ 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: BATTERY PLUG (for LITHIUM-ION BATTERY): REMOVAL+

(c) Disconnect the high voltage cable connector of the HV battery from the HV battery junction block assembly.

NOTICE:

Insulate each disconnected high-voltage connector with insulating tape. Wrap the connector from the wire harness side to the end of the connector.

(d) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

z32-1 (+) - Body ground

Ignition switch off

10 MΩ or higher

z21-1 (-) - Body ground

Ignition switch off

10 MΩ or higher

*a

Component without harness connected

(HV Battery Junction Block Assembly)

NG

GO TO STEP 35

OK

18.

CHECK HYBRID BATTERY TERMINAL BLOCK

CAUTION:

Be sure to wear insulated gloves and protective goggles.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the high voltage cable connector of the HV battery from the hybrid battery terminal block.

NOTICE:

Insulate each disconnected high-voltage connector with insulating tape. Wrap the connector from the wire harness side to the end of the connector.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

z31-1 - Body ground

Ignition switch off

10 MΩ or higher

z30-1 - Body ground

Ignition switch off

10 MΩ or higher

*a

Component without harness connected

(Hybrid Battery Terminal Block)

NG

GO TO STEP 22

OK

19.

CHECK HV BATTERY

CAUTION:

Be sure to wear insulated gloves and protective goggles.

(a) Check that no electrolyte is leaking from each HV supply stack sub-assembly.

Click here 2022 - 2024 MY RAV4 HV [12/2021 -        ]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): INSPECTION

Result

Proceed to

Electrolyte is not leaking from the HV supply stack sub-assembly.

A

Electrolyte is leaking from the HV supply stack sub-assembly.

B

B

GO TO STEP 23

A

20.

CHECK NO. 2 HV SUPPLY STACK SUB-ASSEMBLY

CAUTION:

Be sure to wear insulated gloves and protective goggles.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the HV battery high voltage connector.

NOTICE:

Insulate each disconnected high-voltage connector with insulating tape. Wrap the connector from the wire harness side to the end of the connector.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

A-1 - Body ground

Ignition switch off

10 MΩ or higher

*a

Component without harness connected

(No. 2 HV Supply Stack Sub-assembly)

NG

GO TO STEP 24

OK

21.

REPLACE NO. 1 HV SUPPLY STACK SUB-ASSEMBLY

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

22.

REPLACE HYBRID BATTERY TERMINAL BLOCK

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: FUSE BOX (for LITHIUM-ION BATTERY): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: FUSE BOX (for LITHIUM-ION BATTERY): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: FUSE BOX (for LITHIUM-ION BATTERY): REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

23.

REPLACE HV BATTERY (HV SUPPLY STACK SUB-ASSEMBLY THAT HAS A LEAK OF ELECTROLYTE)

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

24.

REPLACE NO. 2 HV SUPPLY STACK SUB-ASSEMBLY

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: HV BATTERY STACK (for LITHIUM-ION BATTERY): REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

25.

CHECK INVERTER WITH CONVERTER ASSEMBLY

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the motor cable from the inverter with converter assembly.

HINT:

Make sure that no foreign matter, coolant or water enters the inverter with converter assembly.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

High voltage terminal - Body ground

Ignition switch off

1 MΩ or higher

HINT:

Perform this inspection with the motor cable disconnected from the inverter with converter assembly.

*a

High Voltage Terminal

NG

GO TO STEP 33

OK

26.

CHECK MOTOR CABLE (FOR MG2)

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the motor cable from the hybrid vehicle transaxle assembly.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

d2-2 (U) - Shield ground

Ignition switch off

10 MΩ or higher

d2-3 (V) - Shield ground

Ignition switch off

10 MΩ or higher

d2-1 (W) - Shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

Motor Cable (for MG2)

(Inverter with Converter Assembly Side)

NG

GO TO STEP 29

OK

27.

CHECK MOTOR CABLE (FOR MG1)

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

d2-5 (U) - Shield ground

Ignition switch off

10 MΩ or higher

d2-6 (V) - Shield ground

Ignition switch off

10 MΩ or higher

d2-4 (W) - Shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

Motor Cable (for MG1)

(Inverter with Converter Assembly Side)

NG

GO TO STEP 30

OK

28.

REPLACE HYBRID VEHICLE TRANSAXLE ASSEMBLY

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; P710 (HYBRID TRANSMISSION / TRANSAXLE): HYBRID VEHICLE TRANSAXLE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; P710 (HYBRID TRANSMISSION / TRANSAXLE): HYBRID VEHICLE TRANSAXLE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; P710 (HYBRID TRANSMISSION / TRANSAXLE): HYBRID VEHICLE TRANSAXLE: REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

29.

REPLACE MOTOR CABLE

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

30.

REPLACE MOTOR CABLE

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; P710 (HYBRID TRANSMISSION / TRANSAXLE): MOTOR CABLE: REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

31.

CHECK HIGH VOLTAGE DIRECT CURRENT AREA

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the HV floor under wire connector from the inverter with converter assembly.

HINT:

Make sure that no foreign matter has entered or contaminated the HV floor under wire.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.
  • Be sure not to damage or deform the terminal being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Y8-1 (CBI) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

Y8-2 (CEI) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

HINT:

Visually inspect the HV floor under wire for damage. If there is any damage, then this is the likely cause of low insulation resistance.

*1

Shield Ground

*a

HV Floor Under Wire

(Inverter with Converter Assembly Side)

NG

GO TO STEP 34

OK

32.

CHECK HV AIR CONDITIONING WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the HV air conditioning wire connector from the inverter with converter assembly.

HINT:

Make sure that no foreign matter has entered or contaminated the HV air conditioning wire.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.
  • Be sure to inspect with connecting the tester probes to the tips of the terminal.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Z2-1 (ACPB) - Body ground and shield ground

Ignition switch off

3 MΩ or higher

Z2-2 (ACPE) - Body ground and shield ground

Ignition switch off

3 MΩ or higher

*1

Shield Ground

*a

HV Air Conditioning Wire

(Inverter with Converter Assembly Side)

*b

Tip of Terminal

NG

GO TO STEP 36

OK

33.

REPLACE INVERTER WITH CONVERTER ASSEMBLY

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: INVERTER WITH CONVERTER (for AWD): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: INVERTER WITH CONVERTER (for AWD): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: INVERTER WITH CONVERTER (for AWD): REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

34.

CHECK FLOOR UNDER WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the No. 1 HV battery cover panel RH.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: HV BATTERY (for LITHIUM-ION BATTERY): REMOVAL+ 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: HV BATTERY (for LITHIUM-ION BATTERY): REMOVAL+ 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: HV BATTERY (for LITHIUM-ION BATTERY): REMOVAL+

(c) Disconnect the HV floor under wire connectors from the HV battery junction block assembly.

HINT:

Make sure that no foreign matter has entered or contaminated the HV floor under wire.

(d) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.
  • Be sure not to damage or deform the terminal being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Y8-1 (CBI) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

Y8-2 (CEI) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

HINT:

Visually inspect the HV floor under wire for damage. If there is any damage, then this is the likely cause of low insulation resistance.

*1

Shield Ground

*a

HV Floor Under Wire

(Inverter with Converter Assembly Side)

NG

GO TO STEP 38

OK

35.

REPLACE HV BATTERY JUNCTION BLOCK ASSEMBLY

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: HV RELAY ASSEMBLY (for LITHIUM-ION BATTERY): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: HV RELAY ASSEMBLY (for LITHIUM-ION BATTERY): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: HV RELAY ASSEMBLY (for LITHIUM-ION BATTERY): REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

36.

CHECK HV AIR CONDITIONING WIRE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the HV air conditioning wire from the compressor with motor assembly.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HEATING / AIR CONDITIONING: COMPRESSOR (for A25A-FXS): REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HEATING / AIR CONDITIONING: COMPRESSOR (for A25A-FXS): REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HEATING / AIR CONDITIONING: COMPRESSOR (for A25A-FXS): REMOVAL

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

  • Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.
  • Be sure to inspect with connecting the tester probes to the tips of the terminal.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Z2-1 (ACPB) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

Z2-2 (ACPE) - Body ground and shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

HV Air Conditioning Wire

(Inverter with Converter Assembly Side)

*b

Tip of Terminal

NG

GO TO STEP 39

OK

37.

GO TO AIR CONDITIONING SYSTEM (P1C7C49)

Click here 2021 - 2024 MY RAV4 HV [08/2020 -        ]; HEATING / AIR CONDITIONING: AIR CONDITIONING SYSTEM (for HV Model): P1C7C49; Hybrid/EV Battery Voltage System Isolation (A/C Area) Internal Electronic Failure

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

38.

REPLACE FLOOR UNDER WIRE

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

39.

REPLACE HV AIR CONDITIONING WIRE

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

40.

CHECK INVERTER WITH CONVERTER ASSEMBLY

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Disconnect the HV floor under wire (rear traction motor cable) from the inverter with converter assembly.

HINT:

Make sure that no foreign matter, coolant or water enters the inverter with converter assembly.

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

High voltage terminal - Body ground

Ignition switch off

1 MΩ or higher

HINT:

Perform this inspection with the HV floor under wire (rear traction motor cable) disconnected from the inverter with converter assembly.

*a

High Voltage Terminal

NG

GO TO STEP 33

OK

41.

CHECK FLOOR UNDER WIRE (REAR TRACTION MOTOR CABLE)

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the ignition switch to ON (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the HV floor under wire (rear traction motor cable) from the rear traction motor with transaxle assembly.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

Y5-2 (R-U) - Shield ground

Ignition switch off

10 MΩ or higher

Y5-1 (R-V) - Shield ground

Ignition switch off

10 MΩ or higher

Y5-3 (R-W) - Shield ground

Ignition switch off

10 MΩ or higher

*1

Shield Ground

*a

HV Floor Under Wire (Rear Traction Motor Cable)

(Inverter with Converter Assembly Side)

NG

GO TO STEP 45

OK

42.

CHECK REAR TRACTION MOTOR CABLE

CAUTION:

Be sure to wear insulated gloves.

(a) Check that the service plug grip is not installed.

NOTICE:

After removing the service plug grip, do not turn the power switch on (READY), unless instructed by the repair manual because this may cause a malfunction.

(b) Remove the rear traction motor cable from the rear traction motor with transaxle assembly.

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL

(c) Using a megohmmeter set to 500 V, measure the resistance according to the value(s) in the table below.

NOTICE:

Be sure to set the megohmmeter to 500 V when performing this test. Using a setting higher than 500 V can result in damage to the component being inspected.

Standard Resistance:

Tester Connection

Condition

Specified Condition

R-W - Shield ground

Ignition switch off

100 MΩ or higher

R-V - Shield ground

Ignition switch off

100 MΩ or higher

R-U - Shield ground

Ignition switch off

100 MΩ or higher

*1

Shield Ground

*a

Rear Traction Motor Cable

(d) Install the rear traction motor cable.

NG

GO TO STEP 44

OK

43.

REPLACE REAR TRACTION MOTOR WITH TRANSAXLE ASSEMBLY

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

44.

REPLACE REAR TRACTION MOTOR CABLE

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; Q610 (HYBRID TRANSMISSION / TRANSAXLE): REAR TRACTION MOTOR: REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS

45.

REPLACE FLOOR UNDER WIRE

Click here 2022 MY RAV4 HV [12/2021 - 10/2022]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL 2023 MY RAV4 HV [10/2022 - 10/2023]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL 2024 MY RAV4 HV [10/2023 -        ]; HYBRID / BATTERY CONTROL: FRAME WIRE: REMOVAL

NEXT

PERFORM CONFIRMATION AFTER REPLACING PARTS