Last Modified: 01-30-2024 6.11:8.1.0 Doc ID: RM100000002046A
Model Year Start: 2022 Model: RAV4 Prod Date Range: [12/2021 -           ]
Title: A25A-FKS (ENGINE CONTROL): SFI SYSTEM: P012800,P012807; Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature); 2022 - 2024 MY RAV4 RAV4 HV [12/2021 -        ]

DTC

P012800

Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature)

DTC

P012807

Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature) Mechanical Failure

DESCRIPTION

The ECM uses the engine coolant temperature sensor, installed to the water outlet, to monitor the operation of the thermostat.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Memory

Note

P012800

Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature)

All of the following conditions are met for 5 seconds or more (2 trip detection logic):

  1. Cold start.
  2. The engine is warmed up.
  3. The engine coolant temperature is less than 75°C (167°F).
  • Water inlet with thermostat sub-assembly
  • Engine cooling system
  • Engine coolant temperature sensor
  • ECM

Comes on

DTC stored

  • SAE Code: P0128
  • DTC for Mexico Models: Does not apply

P012807

Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature) Mechanical Failure

All of the following conditions are met for 30 seconds or more (2 trip detection logic)*1:

  1. Water inlet housing with water pump sub-assembly is operating,
  2. The engine coolant temperature is less than 75°C (167°F).
  3. The difference between the rate of change of the engine coolant temperature sensor and No. 2 engine coolant temperature sensor is within the threshold.
  4. The difference between the temperature detected by the engine coolant temperature sensor and that detected by the No. 2 engine coolant temperature sensor is within the threshold.

All of the following conditions are met for 3 times (2 trip detection logic)*2:

  1. The engine coolant temperature is less than 75°C (167°F).
  2. The value of the change in engine coolant temperature is less than the threshold.
  • Water inlet with thermostat sub-assembly
  • Engine cooling system
  • Engine coolant temperature sensor
  • No. 2 engine coolant temperature sensor*1
  • Flow Shutting Valve (for Heater Control)*2
  • Flow Shutting Valve (for ATF Control)*2
  • ATF temperature sensor*2
  • ECM

Comes on

DTC stored

  • SAE Code: P0128
  • DTC for Mexico Models: Does not apply
  • *1: w/ Grille Shutter System
  • *2: w/o Grille Shutter System

MONITOR DESCRIPTION

P012800: Judgment by Simulated Engine Coolant Temperature

The ECM estimates the engine coolant temperature based on the starting temperature, engine loads, and engine speeds. The ECM then compares the estimated temperature with the actual engine coolant temperature. When the estimated engine coolant temperature reaches 75°C (167°F), the ECM checks the actual engine coolant temperature. If the actual engine coolant temperature is less than 75°C (167°F), the ECM interprets this as a malfunction in the thermostat or the engine cooling system and stores the DTC.

P012807: Judgment by Engine Coolant Temperature and No. 2 Engine Coolant Temperature Changes (w/ Grille Shutter System)

When the engine coolant temperature is less than 75°C (167°F) and the water inlet housing with water pump sub-assembly is operating, if the rate of change and detected temperature of the engine coolant temperature sensor and No. 2 engine coolant temperature sensor differ by less than 0.1°C/sec. and 6.6°C respectively for a certain amount of time, the ECM will determine that the thermostat is stuck open, illuminate the MIL and store a DTC.

P012807: Judgment by Engine Coolant Temperature Change at High Vehicle Speed (w/o Grille Shutter System)

When the vehicle is being driven between 65 and 128 km/h (40.625 and 80 mph) and the monitoring conditions are met, the change in engine coolant temperature is monitored. The amount of change is judged to be normal or abnormal every 13 seconds, in order to monitor the thermostat operation. If the engine coolant temperature changes more than the threshold, the thermostat is judged as normal, but if it changes less than the threshold, the thermostat is judged to be malfunctioning. If an abnormal judgment is made 3 times, the ECM will illuminate the MIL and store a DTC.

MONITOR STRATEGY

w/ Grille Shutter System

Related DTCs

P0128: Coolant thermostat (judgment by simulated engine coolant temperature)

P0128: Coolant thermostat (judgment by engine coolant temperature and No. 2 engine coolant temperature changes)

Required Sensors/Components (Main)

Thermostat

Engine coolant temperature sensor

Required Sensors/Components (Related)

Intake air temperature sensor

No. 2 engine coolant temperature sensor

Frequency of Operation

Once per driving cycle

Duration

240 seconds: Judgment by simulated engine coolant temperature

-: Judgment by engine coolant temperature and No. 2 engine coolant temperature changes

MIL Operation

2 driving cycles

Sequence of Operation

None

w/o Grille Shutter System

Related DTCs

P0128: Coolant thermostat (judgment by simulated engine coolant temperature)

P0128: Coolant thermostat (judgment by engine coolant temperature change at high vehicle speed)

Required Sensors/Components (Main)

Thermostat

Engine coolant temperature sensor

Required Sensors/Components (Related)

Intake air temperature sensor (for mass air flow meter sub-assembly)

Vehicle speed sensor

Frequency of Operation

Once per driving cycle: Judgment by simulated engine coolant temperature

Continuous: Judgment by engine coolant temperature change at high vehicle speed

Duration

300 seconds: Judgment by simulated engine coolant temperature

-: Judgment by engine coolant temperature change at high vehicle speed

MIL Operation

2 driving cycles

Sequence of Operation

None

TYPICAL ENABLING CONDITIONS

ALL

Monitor runs whenever the following DTCs are not stored

P0010, P1360, P1362, P1364, P1366, P2614 (Motor drive VVT system control module)

P0011 (VVT system - advance)

P0012 (VVT system - retard)

P0013 (Exhaust VVT oil control solenoid)

P0014 (Exhaust VVT system - advance)

P0015 (Exhaust VVT system - retard)

P0016 (VVT system - misalignment)

P0017 (Exhaust VVT system - misalignment)

P0031, P0032, P101D (Air fuel ratio sensor (sensor 1) heater)

P0087, P0088, P0191, P0192, P0193 (Fuel pressure sensor (for high pressure side))

P0101, P0102, P0103 (Mass air flow meter)

P0107, P0108 (Manifold absolute pressure)

P0111, P0112, P0113 (Intake air temperature sensor)

P0116, P0117, P0118 (Engine coolant temperature sensor)

P0121, P0122, P0123, P0222, P0223, P2135 (Throttle position sensor)

P014C, P014D, P015A, P015B, P2195, P2196, P2237, P2238, P2239, P2252, P2253 (Air fuel ratio sensor (sensor 1))

P0171, P0172 (Fuel system)

P0201, P0202, P0203, P0204, P062D, P21CF, P21D0, P21D1, P21D2 (Fuel injector)

P0300 - P0304 (Misfire)

P0335, P0337, P0338 (Crankshaft position sensor)

P0340, P0342, P0343 (Camshaft position sensor)

P0365, P0367, P0368 (Exhaust camshaft position sensor)

P0400 (EGR system)

P0401 (EGR system (closed))

P0489, P0490 (EGR control circuit)

P0500 (Vehicle speed sensor)

P059F, P05A4 (Active grille air shutter)

P107B, P107C, P107D (Fuel pressure sensor (for low pressure side))

P11EA, P11EC, P11ED, P11EE, P11EF, P219A, P219C, P219D, P219E, P219F (Air-fuel ratio imbalance)

P1235 (High pressure fuel pump circuit)

Judgment by Simulated Engine Coolant Temperature

Battery voltage

11 V or higher

Either of the following conditions is met

1 or 2

1. All of the following conditions are met

-

Engine coolant temperature at engine start - Intake air temperature (for mass air flow meter sub-assembly) at engine start

-15 to 7°C (-27 to 12.6°F)

Engine coolant temperature at engine start

-10 to 56°C (14 to 133°F)

Intake air temperature (for mass air flow meter sub-assembly) at engine start

-10 to 56°C (14 to 133°F)

2. All of the following conditions are met

-

Engine coolant temperature at engine start - Intake air temperature (for mass air flow meter sub-assembly) at engine start

Higher than 7°C (12.6°F)

Engine coolant temperature at engine start

56°C (133°F) or less

Intake air temperature (for mass air flow meter sub-assembly) at engine start

-10°C (14°F) or higher

Accumulated time at vehicle speed of 128 km/h (80 mph) or more

Less than 20 seconds

Judgment by Engine Coolant Temperature and No. 2 Engine Coolant Temperature Changes (w/ Grille Shutter System)

Battery voltage

11 V or higher

Engine coolant temperature at first engine start

-10°C (14°F) or higher

Target engine coolant flow by engine water pump

1.5 L/min or higher

Engine coolant temperature sensor malfunction (P0117, P0118)

Not detected

No. 2 engine coolant temperature sensor malfunction (P00B3, P00B4)

Not detected

Judgment by Engine Coolant Temperature Change at High Vehicle Speed (w/o Grille Shutter System)

During that all of the following conditions are met

13 seconds or more

Battery voltage

11 V or higher

Engine coolant temperature at engine start

-10°C (14°F) or higher

Intake air temperature at engine start

-10°C (14°F) or higher

Target engine coolant flow by engine water pump

1.5 L/min or more

Vehicle speed

65 to 128 km/h (40.625 to 80 mph)

TYPICAL MALFUNCTION THRESHOLDS

P012800: Judgment by Simulated Engine Coolant Temperature

Duration that both of the following conditions are met

5 seconds or more

(a) Estimated engine coolant temperature

75°C (167°F) or higher

(b) Engine coolant temperature sensor output

Less than 75°C (167°F)

Judgment by Engine Coolant Temperature and No. 2 Engine Coolant Temperature Changes (w/ Grille Shutter System)

Engine coolant temperature change speed

Less than -0.4°C/sec (31°F/sec), or higher than 0.15°C/sec (32.27°F/sec)

Engine coolant temperature

Less than 75°C (167°F)

Grade of engine coolant temperature - No. 2 engine coolant temperature

Higher than -0.1°C/sec (-0.18°F/sec), and less than 0.1°C/sec (0.18°F/sec)

Absolute engine coolant temperature - No. 2 engine coolant temperature

Less than 6.6°C (11.8°F)

P012807: Judgment by Engine Coolant Temperature Change at High Vehicle Speed (w/o Grille Shutter System)

Malfunction counter

3 times or more

Malfunction counter is incremented when following conditions are met

A and B

A. Average engine coolant temperature change (vary with current engine coolant temperature, estimated ambient air temperature, intake air mass and vehicle speed)

Less than -0.1°C/sec (-0.18°F/sec)

B. Engine coolant temperature is satisfied throughout this period

Less than 75°C (167°F)

CONFIRMATION DRIVING PATTERN

HINT:

  • After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.

    Click here 2021 - 2024 MY RAV4 RAV4 HV [08/2020 -        ]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM: DTC CHECK / CLEAR

  • When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

    Click here 2021 - 2024 MY RAV4 RAV4 HV [08/2020 -        ]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM: DTC CHECK / CLEAR

  1. Stop the engine and allow it to soak.
  2. Connect the Techstream to the DLC3.
  3. Turn the ignition switch to ON [A].
  4. Turn the Techstream on.
  5. Enter the following menus: Powertrain / Engine / Data List / Coolant Temperature and Intake Air Temperature.
  6. Check that the value of the Data List item Coolant Temperature is 56°C (133°F) or less and the value of the Data List item Intake Air Temperature is between 0 and 35°C (32 and 95°F).
  7. Set the heater control to MAX HOT with fresh air mode selected and turn the A/C off.
  8. Start the engine and drive the vehicle at 80 km/h (50 mph) or more for 20 minutes [B].

    CAUTION:

    When performing the confirmation driving pattern, obey all speed limits and traffic laws.

  9. After the value of the Data List item Coolant Temperature stabilizes, check that it is 75°C (167°F) or higher.

    HINT:

    If the value of the Data List item Coolant Temperature is less than 75°C (167°F) while driving the vehicle at 80 km/h (50 mph), inspect the cooling system and thermostat.

  10. Enter the following menus: Powertrain / Engine / Trouble Codes [C].
  11. Read the pending DTCs.

    HINT:

    • If a pending DTC is output, the system is malfunctioning.
    • If a pending DTC is not output, perform the following procedure.
  12. Enter the following menus: Powertrain / Engine / Utility / All Readiness.
  13. Input the DTC: P012800 or P012807.
  14. Check the DTC judgment result.

    Techstream Display

    Description

    NORMAL

    • DTC judgment completed
    • System normal

    ABNORMAL

    • DTC judgment completed
    • System abnormal

    INCOMPLETE

    • DTC judgment not completed
    • Perform driving pattern after confirming DTC enabling conditions

    HINT:

    • If the judgment result is NORMAL, the system is normal.
    • If the judgment result is ABNORMAL, the system has a malfunction.
    • If the judgment result is INCOMPLETE, If the judgment result is INCOMPLETE, perform steps [D] through [G].
    • [A] to [C]: Normal judgment procedure.

      The normal judgment procedure is used to complete DTC judgment and also used when clearing permanent DTCs.

    • When clearing the permanent DTCs, do not disconnect the cable from the battery terminal or attempt to clear the DTCs during this procedure, as doing so will clear the universal trip and normal judgment histories.
  15. With the engine stopped, leave the vehicle outside overnight [D].
  16. Turn the ignition switch to ON [E].
  17. Turn the Techstream on.
  18. Enter the following menus: Powertrain / Engine / Data List / Coolant Temperature.
  19. Check that the value of the Data List item Coolant Temperature is 25°C (77°F) or less.
  20. Start the engine and drive the vehicle at 90 km/h (56 mph) or more for 20 minutes [F].

    CAUTION:

    When performing the confirmation driving pattern, obey all speed limits and traffic laws.

  21. Enter the following menus: Powertrain / Engine / Trouble Codes [G].
  22. Read the pending DTCs.

    HINT:

    • If a pending DTC is output, the system is malfunctioning.
    • If a pending DTC is not output, perform the following procedure.
  23. Enter the following menus: Powertrain / Engine / Utility / All Readiness.
  24. Input the DTC: P012800 or P012807.
  25. Check the DTC judgment result again.

    Techstream Display

    Description

    NORMAL

    • DTC judgment completed
    • System normal

    ABNORMAL

    • DTC judgment completed
    • System abnormal

    INCOMPLETE

    • DTC judgment not completed
    • Perform driving pattern after confirming DTC enabling conditions

    HINT:

    • If the judgment result is NORMAL, the system is normal.
    • If the judgment result is ABNORMAL, the system has a malfunction.
    • [D] to [G]: Normal judgment procedure.

      The normal judgment procedure is used to complete DTC judgment and also used when clearing permanent DTCs.

    • When clearing the permanent DTCs, do not disconnect the cable from the battery terminal or attempt to clear the DTCs during this procedure, as doing so will clear the universal trip and normal judgment histories.

CAUTION / NOTICE / HINT

HINT:

  • When the DTC is output, check the engine coolant temperature using the Techstream. Enter the following menus: Powertrain / Engine / Data List / Coolant Temperature. If the Coolant Temperature value is lower than the actual engine coolant temperature, the engine coolant temperature sensor circuit may be malfunctioning. In this case, check the wire harnesses and connectors (and those connections) between the ECM and the engine coolant temperature sensor first.
  • Read freeze frame data using the Techstream. The ECM records vehicle and driving condition information as freeze frame data the moment a DTC is stored. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.

PROCEDURE

1.

CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO DTC P012800)

(a) Connect the Techstream to the DLC3.

(b) Turn the ignition switch to ON.

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Trouble Codes.

(e) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTC P012800 is output

A

DTC P012807 is output (w/ Grille Shutter System)

DTC P012807 is output (w/o Grille Shutter System)

B

DTC P012800, P012807 and other DTCs are output

C

HINT:

If any DTCs other than P012800 or P012807 are output, troubleshoot those DTCs first.

B

GO TO STEP 6

C

GO TO DTC CHART 2022 MY RAV4 RAV4 HV [12/2021 - 10/2022]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM: DIAGNOSTIC TROUBLE CODE CHART 2023 MY RAV4 RAV4 HV [10/2022 - 10/2023]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM: DIAGNOSTIC TROUBLE CODE CHART 2024 MY RAV4 RAV4 HV [10/2023 -        ]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM: DIAGNOSTIC TROUBLE CODE CHART

A

2.

CHECK ENGINE COOLING SYSTEM

(a) Check for defects in the engine cooling system that might cause the system to be too cold, such as abnormal cooling fan operation or any modifications.

NG

REPAIR OR REPLACE ENGINE COOLING SYSTEM

OK

3.

INSPECT WATER INLET WITH THERMOSTAT SUB-ASSEMBLY

(a) Inspect the water inlet with thermostat sub-assembly (thermostat opening temperature).

Click here 2019 - 2024 MY RAV4 [11/2018 -        ]; A25A-FKS (COOLING): THERMOSTAT: INSPECTION

NG

REPLACE WATER INLET WITH THERMOSTAT SUB-ASSEMBLY 2021 - 2022 MY RAV4 [08/2020 - 10/2022]; A25A-FKS (COOLING): THERMOSTAT: REMOVAL 2023 MY RAV4 [10/2022 - 10/2023]; A25A-FKS (COOLING): THERMOSTAT: REMOVAL 2024 MY RAV4 [10/2023 -        ]; A25A-FKS (COOLING): THERMOSTAT: REMOVAL

OK

4.

INSPECT ENGINE COOLANT TEMPERATURE SENSOR

(a) Inspect the engine coolant temperature sensor.

Click here 2019 - 2024 MY RAV4 [11/2018 -        ]; A25A-FKS (ENGINE CONTROL): ENGINE COOLANT TEMPERATURE SENSOR: INSPECTION

HINT:

Perform "Inspection After Repair" after replacing the engine coolant temperature sensor.

Click here 2022 - 2024 MY RAV4 RAV4 HV [12/2021 -        ]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM: INITIALIZATION

Result

Proceed to

OK (w/ Grille Shutter System)

A

OK (w/o Grille Shutter System)

B

NG

C

B

REPLACE ECM 2021 - 2022 MY RAV4 [08/2020 - 10/2022]; A25A-FKS (ENGINE CONTROL): ECM: REMOVAL 2023 MY RAV4 [10/2022 - 10/2023]; A25A-FKS (ENGINE CONTROL): ECM: REMOVAL 2024 MY RAV4 [10/2023 -        ]; A25A-FKS (ENGINE CONTROL): ECM: REMOVAL

C

REPLACE ENGINE COOLANT TEMPERATURE SENSOR

A

5.

INSPECT NO. 2 ENGINE COOLANT TEMPERATURE SENSOR

(a) Inspect the No. 2 engine coolant temperature sensor.

Click here 2019 - 2024 MY RAV4 [11/2018 -        ]; A25A-FKS (ENGINE CONTROL): ENGINE COOLANT TEMPERATURE SENSOR: INSPECTION+

OK

REPLACE ECM 2021 - 2022 MY RAV4 [08/2020 - 10/2022]; A25A-FKS (ENGINE CONTROL): ECM: REMOVAL 2023 MY RAV4 [10/2022 - 10/2023]; A25A-FKS (ENGINE CONTROL): ECM: REMOVAL 2024 MY RAV4 [10/2023 -        ]; A25A-FKS (ENGINE CONTROL): ECM: REMOVAL

NG

REPLACE NO. 2 ENGINE COOLANT TEMPERATURE SENSOR

6.

CHECK DTC OUTPUT (AUTOMATIC TRANSAXLE SYSTEM)

(a) Connect the Techstream to the DLC3.

(b) Turn the ignition switch to ON.

(c) Enter the following menus: Powertrain / Transmission / Trouble Codes.

(d) Check for DTCs.

Powertrain > Transmission > Trouble Codes

HINT:

If DTCs related to the ATF temperature are output, troubleshoot those DTCs first.

Result

Proceed to

No DTCs are output.

A

DTCs are output.

B

B

GO TO DTC CHART (AUTOMATIC TRANSAXLE SYSTEM)

  • for 2WD:

    Click here 2022 MY RAV4 [12/2021 - 10/2022]; UB80E (AUTOMATIC TRANSMISSION / TRANSAXLE): AUTOMATIC TRANSAXLE SYSTEM: DIAGNOSTIC TROUBLE CODE CHART 2023 - 2024 MY RAV4 [10/2022 -        ]; UB80E (AUTOMATIC TRANSMISSION / TRANSAXLE): AUTOMATIC TRANSAXLE SYSTEM: DIAGNOSTIC TROUBLE CODE CHART

  • for AWD:

    Click here 2022 MY RAV4 [12/2021 - 10/2022]; UB80F (AUTOMATIC TRANSMISSION / TRANSAXLE): AUTOMATIC TRANSAXLE SYSTEM: DIAGNOSTIC TROUBLE CODE CHART 2023 - 2024 MY RAV4 [10/2022 -        ]; UB80F (AUTOMATIC TRANSMISSION / TRANSAXLE): AUTOMATIC TRANSAXLE SYSTEM: DIAGNOSTIC TROUBLE CODE CHART

A

7.

INSPECT FLOW SHUTTING VALVE (FOR HEATER CONTROL) (WATER BY-PASS HOSE ASSEMBLY)

(a) Cool the engine.

(b) Connect the Techstream to the DLC3.

(c) Turn the ignition switch to ON.

(d) Turn the Techstream on.

(e) Enter the following menus: Powertrain / Engine / Active Test / Activate the Coolant Water Route Switching Valve / Data List / Engine Speed and Coolant Water Route Switching Valve.

Powertrain > Engine > Active Test

Active Test Display

Activate the Coolant Water Route Switching Valve

Data List Display

Engine Speed

Coolant Water Route Switching Valve

(f) Perform the Active Test to close the flow shutting valve (for Heater Control).

(g) Start the engine.

(h) With the vehicle stationary, depress the accelerator pedal and maintain an engine speed of 1500 rpm for 15 seconds.

(i) During the engine warm-up process, touch the flow shutting valve (for Heater Control) outlet and inlet hoses and check if there is a difference in temperature.

OK:

There is a difference in temperature.

HINT:

  • P012807 may also be output if the flow shutting valve (for Heater Control) cannot fully close while the engine is cool.
  • If the flow shutting valve (for Heater Control) is closed during the engine warm-up process, there will be a difference in temperature between the outlet and inlet hoses.
NG

REPLACE FLOW SHUTTING VALVE (FOR HEATER CONTROL) (WATER BY-PASS HOSE ASSEMBLY) 2021 - 2022 MY RAV4 [08/2020 - 10/2022]; A25A-FKS (COOLING): FLOW SHUTTING VALVE(for Heater): REMOVAL 2023 MY RAV4 [10/2022 - 10/2023]; A25A-FKS (COOLING): FLOW SHUTTING VALVE(for Heater): REMOVAL 2024 MY RAV4 [10/2023 -        ]; A25A-FKS (COOLING): FLOW SHUTTING VALVE(for Heater): REMOVAL

OK

8.

INSPECT FLOW SHUTTING VALVE (FOR ATF CONTROL) (NO. 1 WATER BY-PASS HOSE)

(a) Cool the engine.

(b) Connect the Techstream to the DLC3.

(c) Turn the ignition switch to ON.

(d) Turn the Techstream on.

(e) Enter the following menus: Powertrain / Engine / Active Test / Activate the Coolant Water Route Switching Valve 2 / Data List / Engine Speed and Coolant Water Route Switching Valve 2.

Powertrain > Engine > Active Test

Active Test Display

Activate the Coolant Water Route Switching Valve 2

Data List Display

Engine Speed

Coolant Water Route Switching Valve 2

(f) Perform the Active Test to close the flow shutting valve (for ATF Control).

(g) Start the engine.

(h) With the vehicle stationary, depress the accelerator pedal and maintain an engine speed of 1500 rpm for 15 seconds.

(i) During the engine warm-up process, touch the flow shutting valve (for ATF Control) outlet and inlet hoses and check if there is a difference in temperature.

OK:

There is a difference in temperature.

HINT:

  • P012807 may also be output if the flow shutting valve (for ATF Control) cannot fully close while the engine is cool.
  • If the flow shutting valve (for ATF Control) is closed during the engine warm-up process, there will be a difference in temperature between the outlet and inlet hoses.
OK

GO TO STEP 2

NG

REPLACE FLOW SHUTTING VALVE (FOR ATF CONTROL) (NO. 1 WATER BY-PASS HOSE) 2021 - 2022 MY RAV4 [08/2020 - 10/2022]; A25A-FKS (COOLING): FLOW SHUTTING VALVE (for ATF): REMOVAL 2023 MY RAV4 [10/2022 - 10/2023]; A25A-FKS (COOLING): FLOW SHUTTING VALVE (for ATF): REMOVAL 2024 MY RAV4 [10/2023 -        ]; A25A-FKS (COOLING): FLOW SHUTTING VALVE (for ATF): REMOVAL