Last Modified: 01-30-2024 6.11:8.1.0 Doc ID: RM100000001F4X8
Model Year Start: 2019 Model: RAV4 Prod Date Range: [11/2018 - 08/2020]
Title: A25A-FKS (ENGINE CONTROL): SFI SYSTEM (w/ Canister Pump Module): P00B162; Radiator Coolant Temperature Sensor Signal Compare Failure; 2019 - 2020 MY RAV4 [11/2018 - 08/2020]

DTC

P00B162

Radiator Coolant Temperature Sensor Signal Compare Failure

DESCRIPTION

This engine uses a No. 2 engine coolant temperature sensor and an intake air temperature sensor to detect temperatures related to engine operation. A thermistor, whose resistance value varies according to the temperature, is built into each sensor. When the temperature becomes low, the resistance of the thermistor increases. When the temperature becomes high, the resistance decreases. These variations in resistance are transmitted to the ECM as voltage changes.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Memory

Note

P00B162

Radiator Coolant Temperature Sensor Signal Compare Failure

All of the following conditions are met (2 trip detection logic):

  1. The battery voltage is 10.5 V or higher.
  2. 7 hours or more have elapsed since the ignition switch was turned off in the previous trip.
  3. Less than 20 seconds since a cold engine start was performed.
  4. The intake air temperature is -10°C (14°F) or higher.
  5. The difference between the readings of the No. 2 engine coolant temperature and intake air temperature is higher than 25°C (45°F).
  • Intake air temperature sensor (mass air flow meter sub-assembly)
  • No. 2 engine coolant temperature sensor
  • ECM

Comes on

DTC stored

SAE Code: P00B2

MONITOR DESCRIPTION

The ECM monitors the difference between the No. 2 engine coolant temperature and the intake air temperature when the engine is started cold to accurately detect the engine temperature conditions. The monitor runs when the engine is started after 7 hours or more have elapsed since the ignition switch was turned off in the previous trip. If the difference between the engine coolant temperature and the intake air temperature on a cold start exceeds 25°C (45°F), the ECM interprets this as a malfunction in the No. 2 engine coolant temperature sensor circuit or intake air temperature sensor circuit, illuminates the MIL and stores this DTC.

MONITOR STRATEGY

Related DTCs

P00B2: No. 2 engine coolant temperature sensor rationality

Required Sensors/Components (Main)

No. 2 engine coolant temperature sensor

Intake air temperature sensor (mass air flow meter sub-assembly)

Required Sensors/Components (Related)

-

Frequency of Operation

Once per driving cycle

Duration

15 seconds

MIL Operation

2 driving cycles

Sequence of Operation

None

TYPICAL ENABLING CONDITIONS

All of the following conditions are met

-

Soak time

7 hours or more

Battery voltage

10.5 V or higher

Time after engine start

Less than 20 seconds

Intake air temperature at engine start

-10°C (14°F) or higher

Intake air temperature sensor circuit fail (P0112, P0113)

Not detected

No. 2 engine coolant temperature sensor circuit fail (P00B3, P00B4)

Not detected

Soak timer fail (P2610)

Not detected

TYPICAL MALFUNCTION THRESHOLDS

Deviated No. 2 engine coolant temperature and intake air temperature

Less than -25°C (-45°F), or higher than 25°C (45°F)

CONFIRMATION DRIVING PATTERN

HINT:

  • After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.

    Click here 2019 - 2020 MY RAV4 [11/2018 - 08/2020]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM (w/ Canister Pump Module): DTC CHECK / CLEAR

  • When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

    Click here 2019 - 2020 MY RAV4 [11/2018 - 08/2020]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM (w/ Canister Pump Module): DTC CHECK / CLEAR

  1. Connect the Techstream to the DLC3.
  2. Turn the ignition switch to ON [A].
  3. Turn the Techstream on.
  4. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
  5. Turn the ignition switch off.
  6. With the engine stopped, leave the vehicle as is for 7.5 hours or more [B].
  7. Turn the ignition switch to ON.
  8. Turn the Techstream on.
  9. Start the engine and wait 20 seconds or more [C].
  10. Enter the following menus: Powertrain / Engine / Trouble Codes [D].
  11. Read the pending DTCs.

    HINT:

    • If a pending DTC is output, the system is malfunctioning.
    • If a pending DTC is not output, perform the following procedure.
  12. Enter the following menus: Powertrain / Engine / Utility / All Readiness.
  13. Input the DTC: P00B162.
  14. Check the DTC judgment result.

    Techstream Display

    Description

    NORMAL

    • DTC judgment completed
    • System normal

    ABNORMAL

    • DTC judgment completed
    • System abnormal

    INCOMPLETE

    • DTC judgment not completed
    • Perform driving pattern after confirming DTC enabling conditions

    HINT:

    • If the judgment result is NORMAL, the system is normal.
    • If the judgment result is ABNORMAL, the system is malfunctioning.
    • If the judgment result is INCOMPLETE, perform steps [B] through [D] again.
    • [B] to [D]: Normal judgment procedure.

      The normal judgment procedure is used to complete DTC judgment and also used when clearing permanent DTCs.

    • When clearing the permanent DTCs, do not disconnect the cable from the battery terminal or attempt to clear the DTCs during this procedure, as doing so will clear the universal trip and normal judgment histories.

CAUTION / NOTICE / HINT

HINT:

Read Freeze Frame Data using the Techstream. The ECM records vehicle and driving condition information as Freeze Frame Data the moment a DTC is stored. When troubleshooting, Freeze Frame Data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.

PROCEDURE

1.

CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO DTC P00B162)

(a) Connect the Techstream to the DLC3.

(b) Turn the ignition switch to ON.

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Trouble Codes.

(e) Read the DTCs and record the Freeze Frame Data.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTC P00B162 is output

A

DTC P00B162 and other DTCs are output

B

HINT:

If any DTCs other than P00B162 are output, troubleshoot those DTCs first.

B

GO TO DTC CHART 2019 MY RAV4 [11/2018 - 10/2019]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM (w/ Canister Pump Module): DIAGNOSTIC TROUBLE CODE CHART 2020 MY RAV4 [10/2019 - 08/2020]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM (w/ Canister Pump Module): DIAGNOSTIC TROUBLE CODE CHART

A

2.

CHECK FREEZE FRAME DATA (COOLANT TEMPERATURE AND RADIATOR COOLANT TEMPERATURE)

(a) Connect the Techstream to the DLC3.

(b) Turn the ignition switch to ON.

(c) Turn the Techstream on.

(d) Using the Techstream, read the values displayed in the freeze frame data recorded in step 1.

Powertrain > Engine > DTC(P00B162) > Freeze Frame Data

Tester Display

Coolant Temperature

Radiator Coolant Temperature

(e) Read the value displayed on the Techstream.

Standard:

Difference between the Coolant Temperature and the Radiator Coolant Temperature is within 15°C (27°F).

HINT:

When the engine is cold, the value of the intake air temperature, ECM internal temperature and ambient temperature should be approximately the same.

NG

REPLACE NO. 2 ENGINE COOLANT TEMPERATURE SENSOR

OK

3.

CHECK FREEZE FRAME DATA (COOLANT TEMPERATURE AND INTAKE AIR TEMPERATURE)

(a) Connect the Techstream to the DLC3.

(b) Turn the ignition switch to ON.

(c) Turn the Techstream on.

(d) Using the Techstream, read the values displayed in the Freeze Frame Data recorded in step 1.

Powertrain > Engine > DTC(P00B162) > Freeze Frame Data

Tester Display

Coolant Temperature

Intake Air Temperature

(e) Read the value displayed on the Techstream.

Standard:

Difference between the Coolant Temperature and the Intake Air Temperature is within 15°C (27°F).

HINT:

  • When the engine is cold, the value of the intake air temperature, ECM internal temperature and ambient temperature should be approximately the same.
  • Perform "Inspection After Repair" after replacing the mass air flow meter sub-assembly.

    Click here 2019 MY RAV4 [11/2018 - 10/2019]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM (w/ Canister Pump Module): INITIALIZATION 2020 MY RAV4 [10/2019 - 08/2020]; A25A-FKS (ENGINE CONTROL): SFI SYSTEM (w/ Canister Pump Module): INITIALIZATION

OK

REPLACE ECM

NG

REPLACE MASS AIR FLOW METER SUB-ASSEMBLY