Last Modified: 11-20-2023 |
6.11:8.1.0 |
Doc ID: RM100000001DVRA |
Model Year Start: 2019 |
Model: Camry |
Prod Date Range: [08/2018 - 03/2020] |
Title: A25A-FKS (ENGINE CONTROL): SFI SYSTEM: P227019,P227118; A/F (O2) Sensor Signal Biased/Stuck Lean Bank 1 Sensor 2 Circuit Current Above Threshold; 2019 - 2020 MY Camry [08/2018 - 03/2020] |
DTC
|
P227019
|
A/F (O2) Sensor Signal Biased/Stuck Lean Bank 1 Sensor 2 Circuit Current Above Threshold
|
DTC
|
P227118
|
A/F (O2) Sensor Signal Biased/Stuck Rich Bank 1 Sensor 2 Circuit Current Below Threshold
|
DESCRIPTION
Refer to DTC P003612.
Click here
HINT:
Although the DTC title say O2 sensor, these DTCs relate to the air fuel ratio sensor (sensor 2).
DTC No.
|
Detection Item
|
DTC Detection Condition
|
Trouble Area
|
MIL
|
Memory
|
Note
|
P227019
|
A/F (O2) Sensor Signal Biased/Stuck Lean Bank 1 Sensor 2 Circuit Current Above Threshold
|
While the fuel-cut operation is performed (during vehicle deceleration), the air fuel ratio sensor (sensor 2) current is 33.13 mA or more for 0.5 seconds or more (2 trip detection logic).
|
-
Open or short in air fuel ratio sensor (sensor 2) circuit
-
Air fuel ratio sensor (sensor 2)
-
Intake system
-
Gas leak from exhaust system
-
Fuel pressure (for high pressure side)
-
Fuel pressure (for low pressure side)
-
Port fuel injector assembly
-
Direct fuel injector assembly
-
Fuel system
-
EGR valve assembly
-
ECM
|
Comes on
|
DTC stored
|
-
SAE Code: P2270
-
DTC for Mexico Models: Does not apply
|
P227118
|
A/F (O2) Sensor Signal Biased/Stuck Rich Bank 1 Sensor 2 Circuit Current Below Threshold
|
While the fuel-cut operation is performed (during vehicle deceleration), the air fuel ratio sensor (sensor 2) current is less than 7.5 mA for 0.5 seconds or more (2 trip detection logic).
|
-
Open or short in air fuel ratio sensor (sensor 2) circuit
-
Air fuel ratio sensor (sensor 2)
-
Intake system
-
Gas leak from exhaust system
-
Fuel pressure (for high pressure side)
-
Fuel pressure (for low pressure side)
-
Port fuel injector assembly
-
Direct fuel injector assembly
-
Fuel system
-
EGR valve assembly
-
ECM
|
Comes on
|
DTC stored
|
-
SAE Code: P2271
-
DTC for Mexico Models: Does not apply
|
HINT:
-
When any of these DTCs are stored, check the air fuel ratio sensor (sensor 2) current output by entering the following menus on the Techstream: Powertrain / Engine / Data List / A/F (O2) Sensor Current B1S2.
-
Short-term fuel trim values can also be read using the Techstream.
-
If an air fuel ratio sensor (sensor 2) malfunction is detected, the ECM will store a DTC.
MONITOR DESCRIPTION
A rich air fuel mixture causes a low air fuel ratio sensor (sensor 2) current, and a lean air fuel mixture causes a high air fuel ratio sensor (sensor 2) current. Therefore, the sensor output becomes low during acceleration, and it becomes high during deceleration with the throttle valve fully closed. The ECM monitors the air fuel ratio sensor (sensor 2) current during fuel-cut and detects any abnormal current values.
If the air fuel ratio sensor (sensor 2) output is 33.13 mA or more for 0.5 seconds or more of cumulative time, the ECM interprets this as a malfunction of the air fuel ratio sensor (sensor 2) and stores DTC P227019 (stuck on high side). If the air fuel ratio sensor (sensor 2) output is less than 7.5 mA for 0.5 seconds or more of cumulative time, the ECM stores DTC P227118 (stuck on low side).
MONITOR STRATEGY
Related DTCs
|
P2270: Air fuel ratio sensor (sensor 2) signal stuck lean
P2271: Air fuel ratio sensor (sensor 2) signal stuck rich
|
Required Sensors/Components (Main)
|
Air fuel ratio sensor (sensor 2)
|
Required Sensors/Components (Related)
|
Crankshaft position sensor
Engine coolant temperature sensor
Throttle position sensor
|
Frequency of Operation
|
Once per driving cycle
|
Duration
|
10 seconds
|
MIL Operation
|
2 driving cycles
|
Sequence of Operation
|
None
|
TYPICAL ENABLING CONDITIONS
Monitor runs whenever the following DTCs are not stored
|
None
|
Battery voltage
|
11 V or higher
|
Engine coolant temperature
|
75°C (167°F) or higher
|
Atmospheric pressure
|
76 kPa(abs) [11.02 psi(abs)] or higher
|
Time after engine start
|
3 seconds or more
|
Air fuel ratio sensor (sensor 2) malfunction (P22AB, P22AC, P22AD, P22B3, P22B4)
|
Not detected
|
TYPICAL MALFUNCTION THRESHOLDS
P2270: Air Fuel Ratio Sensor (Sensor 2) Limit Current (High Side Malfunction)
Duration of following condition
|
0.5 seconds or more
|
Air fuel ratio sensor (sensor 2) current
|
33.13 mA or more
|
P2271: Air Fuel Ratio Sensor (Sensor 2) Limit Current (Low Side Malfunction)
Duration of following condition
|
0.5 seconds or more
|
Air fuel ratio sensor (sensor 2) current
|
Less than 7.5 mA
|
MONITOR RESULT
Refer to detailed information in Checking Monitor Status.
Click here
P2270, P2271: O2 Sensor / OUTPUT RATE B1S2
Monitor ID
|
Test ID
|
Scaling
|
Unit
|
Description
|
$02
|
$91
|
Multiply by 0.004
|
mA
|
Output rate bank 1 sensor 2
|
CONFIRMATION DRIVING PATTERN
HINT:
-
After repair has been completed, clear the DTC and then check that the vehicle has returned to normal by performing the following All Readiness check procedure.
Click here
-
When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.
Click here
-
Connect the Techstream to the DLC3.
-
Turn the ignition switch to ON.
-
Turn the Techstream on.
-
Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
-
Turn the ignition switch off and wait for at least 30 seconds.
-
Turn the ignition switch to ON.
-
Turn the Techstream on.
-
Enter the following menus: Powertrain / Engine / Monitor / Current Monitor.
-
Check that Catalyst Efficiency / Current is Incomplete.
-
Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with the shift lever in P [A].
HINT:
In order to keep the idle stable, turn off the A/C and all other electric loads and do not perform any shift operations.
-
Drive the vehicle at approximately 75 km/h (46 mph) for 10 minutes or more [B].
CAUTION:
When performing the confirmation driving pattern, obey all speed limits and traffic laws.
HINT:
Drive the vehicle while keeping the engine load as constant as possible.
-
With the shift lever in S, drive the vehicle at 75 km/h (46 mph), and then decelerate the vehicle by releasing the accelerator pedal for 10 seconds or more to perform the fuel-cut [C].
CAUTION:
When performing the confirmation driving pattern, obey all speed limits and traffic laws.
-
Repeat step [C] 2 times or more in one driving cycle.
-
Enter the following menus: Powertrain / Engine / Trouble Codes / Pending [D].
-
Read the pending DTCs.
HINT:
-
If a pending DTC is output, the system is malfunctioning.
-
If a pending DTC is not output, perform the following procedure.
-
Enter the following menus: Powertrain / Engine / Utility / All Readiness.
-
Input the DTC: P227019 or P227118.
-
Check the DTC judgment result.
Techstream Display
|
Description
|
NORMAL
|
-
DTC judgment completed
-
System normal
|
ABNORMAL
|
-
DTC judgment completed
-
System abnormal
|
INCOMPLETE
|
-
DTC judgment not completed
-
Perform driving pattern after confirming DTC enabling conditions
|
WIRING DIAGRAM
Refer to DTC P003612.
Click here
CAUTION / NOTICE / HINT
NOTICE:
Inspect the fuses for circuits related to this system before performing the following procedure.
HINT:
-
Sensor 1 refers to the sensor closest to the engine assembly.
-
Sensor 2 refers to the sensor farthest away from the engine assembly.
-
Read Freeze Frame Data using the Techstream. The ECM records vehicle and driving condition information as Freeze Frame Data the moment a DTC is stored. When troubleshooting, Freeze Frame Data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.
PROCEDURE
1.
|
CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO P227019 OR P227118)
|
(a) Connect the Techstream to the DLC3.
(b) Turn the ignition switch to ON.
(c) Turn the Techstream on.
(d) Enter the following menus: Powertrain / Engine / Trouble Codes.
(e) Read the DTCs.
Powertrain > Engine > Trouble Codes
Result
|
Proceed to
|
DTC P227019 or P227118 is output
|
A
|
DTC P227019 or P227118 and P00D562 are output
|
DTC P227019 or P227118 and P013A7C are output
|
DTC P227019 or P227118 and other DTCs are output
|
B
|
HINT:
If any DTCs other than P227019 or P227118 are output, troubleshoot those DTCs first.
A
|
|
|
2.
|
CONFIRM IF VEHICLE HAS RUN OUT OF FUEL IN PAST
|
(a) Has the vehicle run out of fuel in the past?
YES
|
|
|
(a) Connect the Techstream to the DLC3.
(b) Turn the ignition switch to ON.
(c) Turn the Techstream on.
(d) Clear the DTCs.
Powertrain > Engine > Clear DTCs
(e) Turn the ignition switch off and wait for at least 30 seconds.
NEXT
|
|
|
4.
|
CHECK WHETHER DTC OUTPUT RECURS (DTC P227019 OR P227118)
|
(a) Drive the vehicle in accordance with the driving pattern described in the Confirmation Driving Pattern.
(b) Enter the following menus: Powertrain / Engine / Utility / All Readiness.
Powertrain > Engine > Utility
Tester Display
|
All Readiness
|
(c) Input the DTC: P227019 or P227118.
(d) Check the DTC judgment result.
Result
|
Proceed to
|
NORMAL
(DTCs are not output)
|
A
|
ABNORMAL
(DTC P227019 or P227118 is output)
|
B
|
A |
|
DTC CAUSED BY RUNNING OUT OF FUEL
|
(a) Connect the Techstream to the DLC3.
(b) Turn the ignition switch to ON.
(c) Turn the Techstream on.
(d) Clear the DTCs.
Powertrain > Engine > Clear DTCs
(e) Turn the ignition switch off and wait for at least 30 seconds.
NEXT
|
|
|
6.
|
READ VALUE USING TECHSTREAM (TEST VALUE OF AIR FUEL RATIO SENSOR (SENSOR 2))
|
(a) Drive the vehicle in accordance with the driving pattern described in the Confirmation Driving Pattern.
(b) Enter the following menus: Powertrain / Engine / Monitor / Current Monitor / O2 Sensor / Current.
Powertrain > Engine > Monitor
(c) Check that the status of O2 Sensor is Complete. If the status is still Incomplete, drive the vehicle according to the driving pattern again.
(d) Enter the following menus: Powertrain / Engine / Monitor / Current Monitor / O2 Sensor / Details / OUTPUT RATE B1S2.
Powertrain > Engine > Monitor
(e) Check the test value of the air fuel ratio sensor (sensor 2) output current during fuel-cut.
Test Value
|
Proceed to
|
Within normal range (7.5 mA or more, and less than 33.13 mA)
|
A
|
Outside normal range (Less than 7.5 mA, or 33.13 mA or more)
|
B
|
A
|
|
|
7.
|
PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE INJECTION VOLUME FOR A/F SENSOR)
|
(a) Connect the Techstream to the DLC3.
(b) Turn the ignition switch to ON.
(c) Turn the Techstream on.
(d) Start the engine and warm it up until the engine coolant temperature reaches 80°C (176°F) or higher.
(e) Warm up the air fuel ratio sensors at an engine speed of 2500 rpm for 90 seconds.
(f) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Volume for A/F Sensor / Data List / Coolant Temperature, A/F (O2) Sensor Current B1S1 and A/F (O2) Sensor Current B1S2.
Powertrain > Engine > Active Test
Active Test Display
|
Control the Injection Volume for A/F Sensor
|
Data List Display
|
Coolant Temperature
|
A/F (O2) Sensor Current B1S1
|
A/F (O2) Sensor Current B1S2
|
(g) Perform the Control the Injection Volume for A/F Sensor operation with the engine idling.
(h) Monitor the output values of the air fuel ratio sensor (sensor 1) and air fuel ratio sensor (sensor 2) (A/F (O2) Sensor Current B1S1 and A/F (O2) Sensor Current B1S2) displayed on the Techstream.
HINT:
-
The Control the Injection Volume for A/F Sensor operation lowers the fuel injection volume by 12.5% or increases the injection volume by 12.5%.
-
The air fuel ratio sensor (sensor 1) has an output delay of a few seconds and the air fuel ratio sensor (sensor 2) has a maximum output delay of approximately 20 seconds.
-
If the sensor output value does not change (almost no reaction) while performing the Active Test, the sensor may be malfunctioning.
Standard
Techstream Display (Sensor)
|
Injection Volume
|
Status
|
Current
|
A/F (O2) Sensor Current B1S1
(Air fuel ratio (sensor 1))
|
12.5%
|
Rich
|
Below -0.075 mA
|
-12.5%
|
Lean
|
More than 0.037 mA
|
A/F (O2) Sensor Current B1S2
(Air fuel ratio (sensor 2))
|
12.5%
|
Rich
|
Below -0.86 mA
|
-12.5%
|
Lean
|
More than 0.33 mA
|
Status of A/F (O2) Sensor Current B1S1
|
Status of A/F (O2) Sensor Current B1S2
|
Air Fuel Ratio Condition and Air Fuel Ratio Sensor (Sensor 2) Condition
|
Proceed to
|
Lean
|
Lean
|
Actual air fuel ratio lean
|
A
|
Rich
|
Rich
|
Actual air fuel ratio rich
|
Lean/Rich
|
Lean
|
Air fuel ratio sensor (sensor 2) malfunction
|
B
|
Lean/Rich
|
Rich
|
Air fuel ratio sensor (sensor 2) malfunction
|
Lean/Rich
|
Lean/Rich
|
Normal
|
-
Lean: During the Control the Injection Volume for A/F Sensor Active Test, the air fuel ratio sensor (sensor 1) output current (A/F (O2) Sensor Current B1S1) is consistently more than 0.037 mA, and the air fuel ratio sensor (sensor 2) output current (A/F (O2) Sensor Current B1S2) is consistently more than 0.33 mA.
-
Rich: During the Control the Injection Volume for A/F Sensor Active Test, the air fuel ratio sensor (sensor 1) output current (A/F (O2) Sensor Current B1S1) is consistently below -0.075 mA, and the air fuel ratio sensor (sensor 2) output current (A/F (O2) Sensor Current B1S2) is consistently below -0.86 mA.
-
Lean/Rich: During the Control the Injection Volume for A/F Sensor Active Test, the output current of the air fuel ratio sensor (sensor 1) or air fuel ratio sensor (sensor 2) alternate correctly.
HINT:
Refer to "Data List / Active Test" [A/F (O2) Sensor Current B1S1, A/F (O2) Sensor Current B1S2].
Click here
A
|
|
|
(a) Check the intake system for vacuum leaks.
Click here
OK:
No leaks in the intake system.
HINT:
Perform "Inspection After Repair" after repairing or replacing the intake system.
Click here
NG |
|
REPAIR OR REPLACE INTAKE SYSTEM
|
OK
|
|
|
9.
|
CHECK FOR EXHAUST GAS LEAK
|
(a) Check for exhaust gas leaks.
OK:
No gas leaks in exhaust system.
HINT:
Perform "Inspection After Repair" after repairing or replacing the exhaust system.
Click here
NG |
|
REPAIR OR REPLACE EXHAUST SYSTEM
|
OK
|
|
|
10.
|
PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE EGR STEP POSITION)
|
(a) Connect the Techstream to the DLC3.
(b) Turn the ignition switch to ON.
(c) Turn the Techstream on.
(d) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher.
HINT:
The A/C switch and all accessories should be off.
(e) Enter the following menus: Powertrain / Engine / Active Test / Control the EGR Step Position / Data List / Engine Speed, Intake Manifold Absolute Pressure and Coolant Temperature.
Powertrain > Engine > Active Test
Active Test Display
|
Control the EGR Step Position
|
Data List Display
|
Engine Speed
|
Intake Manifold Absolute Pressure
|
Coolant Temperature
|
(f) Check the engine idling condition and Intake Manifold Absolute Pressure values in the Data List while performing the Active Test.
NOTICE:
-
Do not leave the EGR valve open for 10 seconds or more during the Active Test.
-
Be sure to return the EGR valve to step 0 when the Active Test is completed.
-
Do not open the EGR valve 30 steps or more during the Active Test.
OK:
The value of Intake Manifold Absolute Pressure and Engine Speed change in response to EGR step position.
Standard:
-
|
Control the EGR Step Position (Active Test)
|
0 Steps
|
0 to 30 Steps
|
Idling condition
|
Steady idling
|
Idling changes from steady to rough idling or engine stalls
|
Intake Manifold Absolute Pressure
(Data List)
|
Intake Manifold Absolute Pressure value is 20 to 40 kPa(abs)
(2.9 to 5.8 psi(abs))
(EGR valve is fully closed)
|
Intake Manifold Absolute Pressure value is at least +10 kPa (1.45 psi) higher than when EGR valve is fully closed
|
HINT:
During Active Test, if the idling condition does not change in response to EGR step position, then there is probably a malfunction in the EGR valve.
NG
|
|
|
11.
|
INSPECT EGR VALVE ASSEMBLY
|
(a) Remove the EGR valve assembly.
Click here
(b) Check if the EGR valve is stuck open.
OK:
EGR valve is tightly closed.
HINT:
Perform "Inspection After Repair" after replacing the EGR valve assembly.
Click here
OK
|
|
|
12.
|
CHECK FUEL PRESSURE (FOR LOW PRESSURE SIDE)
|
(a) Check the fuel pressure (for low pressure side).
Click here
OK
|
|
|
13.
|
INSPECT PORT FUEL INJECTOR ASSEMBLY
|
(a) Inspect the port fuel injector assembly (whether fuel volume is high or low, and whether injection pattern is poor).
Click here
HINT:
Perform "Inspection After Repair" after replacing the port fuel injector assembly.
Click here
OK
|
|
|
14.
|
READ VALUE USING TECHSTREAM (FUEL PRESSURE (HIGH))
|
(a) Connect the Techstream to the DLC3.
(b) Start the engine.
(c) Turn the Techstream on.
(d) Enter the following menus: Powertrain / Engine / Data List / Engine Speed, Coolant Temperature, Fuel Pressure (High) and Injection Mode.
Powertrain > Engine > Data List
Tester Display
|
Engine Speed
|
Coolant Temperature
|
Fuel Pressure (High)
|
Injection Mode
|
(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.
(f) According to the display on the Techstream, read the Data List.
Standard:
Techstream Display
|
Condition
|
Specified Condition
|
Fuel Pressure (High)
|
-
Shift position: P
-
A/C: Off
-
Engine warmed up
-
Engine Speed: 3000 rpm
-
Injection Mode: Direct
|
2400 to 19500 kPag
|
NG |
|
REPAIR OR REPLACE FUEL SYSTEM (FOR HIGH PRESSURE SIDE)
|
OK
|
|
|
15.
|
INSPECT DIRECT FUEL INJECTOR ASSEMBLY
|
(a) Inspect the direct fuel injector assembly.
Click here
HINT:
Perform "Inspection After Repair" after replacing the direct fuel injector assembly.
Click here
OK
|
|
|
16.
|
REPLACE AIR FUEL RATIO SENSOR (SENSOR 2)
|
(a) Replace the air fuel ratio sensor (sensor 2).
Click here
HINT:
Perform "Inspection After Repair" after replacing the air fuel ratio sensor (sensor 2).
Click here
NEXT
|
|
|
(a) Connect the Techstream to the DLC3.
(b) Turn the ignition switch to ON.
(c) Turn the Techstream on.
(d) Clear the DTCs.
Powertrain > Engine > Clear DTCs
(e) Turn the ignition switch off and wait for at least 30 seconds.
NEXT
|
|
|
18.
|
CHECK WHETHER DTC OUTPUT RECURS (DTC P227019 OR P227118)
|
(a) Drive the vehicle in accordance with the driving pattern described in the Confirmation Driving Pattern.
(b) Enter the following menus: Powertrain / Engine / Utility / All Readiness.
Powertrain > Engine > Utility
Tester Display
|
All Readiness
|
(c) Input the DTC: P227019 or P227118.
(d) Check the DTC judgment result.
Result
|
Proceed to
|
NORMAL
(DTCs are not output)
|
A
|
ABNORMAL
(DTC P227019 or P227118 is output)
|
B
|
A |
|
END
|
19.
|
REPLACE AIR FUEL RATIO SENSOR (SENSOR 2)
|
(a) Replace the air fuel ratio sensor (sensor 2).
Click here
HINT:
Perform "Inspection After Repair" after replacing the air fuel ratio sensor (sensor 2).
Click here
NEXT
|
|
|
(a) Connect the Techstream to the DLC3.
(b) Turn the ignition switch to ON.
(c) Turn the Techstream on.
(d) Clear the DTCs.
Powertrain > Engine > Clear DTCs
(e) Turn the ignition switch off and wait for at least 30 seconds.
NEXT
|
|
|
21.
|
CHECK WHETHER DTC OUTPUT RECURS (DTC P227019 OR P227118)
|
(a) Drive the vehicle in accordance with the driving pattern described in the Confirmation Driving Pattern.
(b) Enter the following menus: Powertrain / Engine / Utility / All Readiness.
Powertrain > Engine > Utility
Tester Display
|
All Readiness
|
(c) Input the DTC: P227019 or P227118.
(d) Check the DTC judgment result.
Result
|
Proceed to
|
NORMAL
(DTCs are not output)
|
A
|
ABNORMAL
(DTC P227019 or P227118 is output)
|
B
|
A |
|
END
|
(a) Check the fuel lines for leaks or blockage.
HINT:
Perform "Inspection After Repair" after replacing the fuel pump (for low pressure side).
Click here
NG |
|
REPAIR OR REPLACE FUEL SYSTEM
|
|